Constraining the intergalactic UV background with metal line systems

Cora Fechner

Potsdam University, Germany IGM group

January 30, 2008

Cora Fechner

Potsdam University

QSO absorption lines

Figure from Springel et al. (2006)

IGM is highly photoionized: $n_{\rm H\,{\scriptscriptstyle I}}/n_{\rm H} \sim 10^{-4}$ \Rightarrow ionization corrections required (e.g. for metallicity estimates)

Cora Fechner

Potsdam University

Spectral energy distribution

radiation of quasars and galaxies filtered while propagating through the IGM

Cora Fechner

Potsdam University

Metal line systems and the shape of the UV background

Cora Fechner

Potsdam University

Photoionization modeling of metal line systems

... with CLOUDY (Ferland et al. 1998)

- adopt spectral energy distribution of the UV background
- find ionization parameter (i.e. density) to match an observed column density ratio
- scale metallicity (and relative abundances) to match the observed column densities
- If two or more ratios are available, it is possible to
 - ... estimate which spectral energy distribution is consistent with the data.
 - ... investigate the uncertainty of the model parameters with respect to the shape of the ionizing radiation.

Cora Fechner

Variation of the UV background spectrum

change height of 3 Ryd peak and flux between 3 and 4 Ryd

Test study with optical data – HS1700+6416

Cora Fechner

Potsdam University

The UV background at z = 2.38 towards HS1700+6416

$$\begin{split} \log U &= -1.59 \pm 0.15 \\ [\text{Si}/\text{H}] &= -2.22 \pm 0.07 \\ [\text{Si}/\text{C}] &= -0.25 \pm 0.24 \end{split}$$

Test study with optical data – HE0940-1050

The UV background at z = 2.83 towards HE0940-1050

$$\begin{split} \log U &= -1.10 \pm 0.10 \\ [\text{Si}/\text{H}] &= -1.06 \pm 0.15 \\ [\text{Si}/\text{C}] &= +0.41 \pm 0.16 \end{split}$$

Test study with optical data – HE1347-2457

System at z = 1.7529 towards HE1347-2457

(UVES data)

Cora Fechner

Potsdam University

The UV background at z = 1.75 towards HE1347-2457

 $\log U = -2.06 \pm 0.03$ $[Si/H] = -0.12 \pm 0.03$

Cora Fechner

Potsdam University

Observable species

Cora Fechner

Potsdam University

Cora Fechner

UV example: System at z = 1.72 towards HS1700+6416

(UV data from STIS E140M)

 $\Delta \log J(> 4 \text{ Ryd}) = 0.14 \pm_{0.12}^{0.21}$ \Rightarrow UV background harder than HM01

Summary and Outlook

Investigation of 3 metal line systems in the optical:

- \blacktriangleright indication for more pronounced peak of He II Ly α emission at 3 Ryd
- spectra appear to be softer than HM01 at redshift z > 2

(consistent with Agafonova et al. 2006 and Fechner at al. 2006)

- Preliminary study of one metal line system in the UV:
 - additional energy range is probed
 - indication for UV background harder than HM01 at z < 2

(consistent with Agafonova et al. 2006)

► COS is needed:

- spectra with sufficient S/N
- increase number statistics of suitable (low-redshift) systems

Cora Fechner