X-ray-Radio Study of a Sample of 3CRR Sources

P.Grandi¹, G.G.C. Palumbo², E. Cavazzuti³, V.Bianchin¹, F.Massaro⁴, G.Malaguti¹

Comparison betweeen FRI and FRII sources

· FRIs are less efficient in converting gravitational energy into radiation (Fig.2), confirming the weaker emission line L [OIII] luminosity (Fig.3)

• FRIs are less luminous than FRIIs in the X-ray band (Fig. 1)

¹INAF/IASF, Bologna, Italy ²University of Bologna, Italy ³ASI-ASDC, Roma, Italy ⁴Harvard Smithsonian Astrophysical Center, Cambridge, USA

Aim of this work

To study the physical/geometrical differences of radio sources belonging to the same sample, but characterized by different radio and optical classification

To identify the jet and disk relative X-ray

Conclusions

FRIs are less efficient than FRIIs in converting gravitational energy into radiation.

The accretion flow is an important X-ray component in all the FRIIs but LEGs.

◆ LEGs could be objects in which the cold gas component is exhausted.

 \star a_{rx} traces the relative jet/disk contribution to the total spectrum and $\,$ can be used to estimate the accretion flow X-ray Luminosity.

Comparison among different FRII optical classes

Lr increases

 \blacklozenge When $\alpha_{rx}\sim 0.8$, the jet becomes dominant because of the beaming effect amplification . The non-thermal radiation gains an advantage over the thermal one, although the disk is still very powerful (see the 3C 273 case).