A survey of X-ray variability in AGN with XMM-Newton

Gabriele Ponti

Laboratoire AstroParticule et Cosmologie, Universite' Paris 7 - Denis Diderot

Collaborators: M. Cappi, M. Dadina, R. Goosmann, P. Grandi and G. Miniutti

The soft excess problem:

Shakura Sunyaev accretion discs $kT_{BB} \propto M_{BH}^{-1/4}$; $T_{BB} \propto L^{1/4}$

Gierlinski Done 2004

Soft excess tied to atomic processes? Reflection? Absorption? Is it variable?

The Broad lines problem

New generation telescopes: confirm the presence of broad lines

Fabian et al. 2002; Guainazzi et al. 2006; Nandra et al. 2007

BUT a complex absorber could mimic a broad line

Pounds et al. 2003; Reeves et al. 2004; Turner et al. 2005; Miller et al. 2008

Open questions:

Which is the nature of the soft excess? Is it variable?

Are the broad lines real or an effect due to absorption?
Are these variable?

Spectral degeneracy \Rightarrow no solution through mean spectra

⇒ X-ray Spectral Variability study of 36 bright, type 1 AGNs

The sample of type 1 AGNs:

All the Seyfert 1, 1.5 and NLS1 of the ROSAT all sky survey Shwope et al. (2000)

	Source Mame	MBH	$-10.2-10 \ keV$	Source Type	ph time
DSBC count rate > 0.2 counted		M_{\odot}	$erg s^{-1}$		ks
PSPC count rate > 0.2 counts/s	Fairall 9	8.41	43.84	Sy1	30
	ESO 198-G24	8.60	44.06	Sy1	31
	NGC7213	7.95	42.48	Sy1.5	42
\rightarrow Elux > 2 / 10 ⁻¹² org s ⁻¹ cm ⁻²	PICTOR A	7.60	43.67	Sy1	52
\Rightarrow $\Gamma Iu X_{0.5-2 \text{ keV}} \simeq 2.4 \times 10$ erg s cm	MS2254.9-3712	7.04	43.31	Sy1	71
	CTS A08.12		43.35	Sy1	46
	IC 4329A	7.00	43.59	Sy1	133
D>15° and -<01	Ton S 180	7.09	44.41	NLS1/Sy1.2	30
B215 and 250.1	HE 1143-1810		44.21	Sy1	31
	MR2251-178		44.43	Sy1	64
	HE 1029-1401	9.08	44.82	Sy1	46
	NGC 985	8.05	43.78	Sy1	58
$\Rightarrow \sim 200$ sources	NGC 4593	6.73	43.15	Sy1	76
	MKN 590	7.68	43.23	Sy1.2	107
	NGC7469	7.09	43.56	Sy1.2	85
	MKN 841	8.10	43.73	Sy1.5	46
	I Zw 1	7.20	44.01	NLS1/Sy1	83
	PG 1211+143	8.16	44.16	NLS1/Sy1	53
	Mrk 335	7.15	43.80	NLS1/Sy1	32
	NGC5548	7.83	43.65	Sy1.5	93
VMM Nowton EDIC nn	Mkn766	6.54	43.41	NLS1/Sy1.5	129
Amm-newton EPIC-pn	IRASF 12397+3333	6.66	43.76	NLS1/Sy1	78
	Mkn478/PG1440+35	7.34	44.37	NLS1/Sy1	28
	NGC4151	7.12	42.08	Sy1	57
abaanvation > 20 kg	NGC4051	6.28	41.91	NLS1/Sy1.5	117
observation > 30 ks	MKN 110	7.40	44.26	NLS1/Sy1	47
	Mkn 279	7.54	43.85	Sy1.5	30
	IRAS 13224-3809	6.82	43.60	NLS1/Sy1	61
	NGC3783	7.47	43.19	Sy1	136
\Rightarrow 36 sources	MCG-6-30-15	6.19	42.87	Sy1.2	84
	3C 390.3	8.45	44.66	Sy1/BLRG	52
	1H 0707-495	6.31	43.46	NLS1	78
	Mrk509	8.16	44.35	Sy1.2	85
	Ark 120	8.18	44.24	Sy1	112
	3C120	7.44	44.23	Sy1/BLRG	128
	ARK 564	6.06	43.98	NLS1	99

The variability tools:

Root Mean Square variability or Fvar "model and calibration independent" Vaughan et al. 2003; Ponti et al. 2004:Markowitz & Edelson 2004

 $RMS = \sqrt{\frac{S(E)^{2} - \langle \sigma_{err}^{2} \rangle}{\langle X(E) \rangle^{2}}}$

Total rms "model independent" ~ fourier resolved spectroscopy

Revnivtsev et al. 1999; Papadakis et al. 2005

Similar to Miller et al. 2008

The variability tools:

Root Mean Square variability or Fvar "model and calibration independent" Vaughan et al. 2003; Ponti et al. 2004; Markowitz & Edelson 2004

 $RMS = \sqrt{\frac{S(E)^2 - \langle \sigma_{err}^2 \rangle}{\langle X(E) \rangle^2}}$

Total rms "model independent" ~ fourier resolved spectroscopy

$$TotalRMS = \sqrt{\frac{S(E)^2 - \langle \sigma_{err}^2 \rangle}{\Delta E^2 * arf^2}}$$

(h) for the second se

Energy (keV)

Revnivtsev et al. 1999; Papadakis et al. 2005

Similar to Miller et al. 2008

Ponti et al. in prep.

RMS spectra: group A

10 / 36 objects \Rightarrow less variability at low and high energy

RMS spectra: group B

9 / 36 objects constant or lower variability with energy

Ponti et al. in prep.

RMS spectra: group B

9 / 36 objects constant or lower variability with energy

RMS spectra: peculiar and low variability objects

3 / 36 have peculiar variability

14 / 36 objects have variability < 4 %

Deeper study: RMS simulations - time resolved spectral variability

Deeper study: RMS simulations - time resolved spectral variability **MKN335** 0.13 RMS 2.4 **MKN335** 25 Ξ 2-10 keV Spectral Index 2.2 200 500 1000 2000 Energy (eV) 5000 104 Counts/s 20 2 15 0.12 1.8 NGC7469 0.1 0 ¹⁰ 0.08 RMS 1.6×10⁻¹¹ 2×10-11 1.8×10⁻¹¹ 5×104 105 Flux erg cm⁻²s⁻¹ time (s) 0.06 2 1000 2000 Energy (eV) 200 500 1000 5000 10 2 18 2-10 keV Spectral Index 1.9 Counts/s 1.8 16 1.7NGC7469 2.4×10^{-11} 0 2×10^{4} 4×10^{4} 6×104 8×10⁴ 2.6×10^{-11} 2.8×10^{-11} 3×10⁻¹¹ 3.2×10⁻¹¹ Flux erg cm⁻² s⁻¹ time (s)

RMS spectra: Constant SE

7 / 21 objects \Rightarrow SE constant

RMS spectra: slowly variable SE

7 / 21 objects \Rightarrow the low energy drop of variability explained by a slowly variable (30 %) SE

RMS spectra: variable SE

7 / 21 objects \Rightarrow SE as variable as the continuum (correlated)

 Is the RMS shape stable over time or does it vary between different observations of the same source?

Revnivtsev et al. 1999; consistent with Papadakis et al. 2005

Revnivtsev et al. 1999; consistent with Papadakis et al. 2005

Revnivtsev et al. 1999; consistent with Papadakis et al. 2005

Summary:

BROADBAND VARIABILITY:

The RMS spectra generally show a shape with:

- lower variability at low and high energy and a peak around 0.7 to 2 keV

- a flat or decreasing variability with energy

The soft excess is either less variable or as variable as the continuum $\sim 30 \% \Rightarrow SE \text{ constant}$ $\sim 30 \% \Rightarrow \text{ less variable than PL}$ $\sim 30 \% \Rightarrow \text{ variable as PL}$

The **RMS is not constant over time**: the soft excess may appear sometimes constant, sometimes variable in the same source

The flat RMS shapes disfavour the models involving strong relativistic absorption

3-10 keV VARIABILITY:

The red tail of the Fe K line of MCG-6-30-15 shows a significant excess of variability in one over 4 XMM-Newton observations The 3-10 keV total RMS spectrum \Rightarrow PL shape, without signatures of absorption

NGC7469: peculiar spectral variability \Rightarrow inverted Γ_{2-10} -flux relation