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The Influence of AGN Outflows

=

They may affect dispersal of heavy elements into the IGM and ICM.
[Cavaliere et al. 2002; Adelberger et al. 2003; Granato et al. 2004;
Scannapleco & Oh 2004]

They influence the ionization strucill e I\/I. [Kriss et al. 1997].

ithe host galaxy. '
.

BlOWS are created, what structure
‘ f , energy they carry.

A key guestion: do the outflows escape the confines of the host galaxy?
Crucial to understanding the workings of the central engine:

Accretion process

Total energy budget
Low-redshift AGN are the nearest and brightest.

We can study these at the highest angular scales and best S/N. !




Summary of the FUSE AGN Survey Results

=

103 AGN observed with FUSE with z < 0.15.
81 have S/N> 10 per Angstrom, adequate for absorptibh searches.
In the low-z sample (for which O Vlis in the FU
153 spectra of 81 unique AGN
7/ 3ulpe
8 Type 2
Low-z AGN are bluer tham*

Their spectral energy SR
disk models (Shang et alr2004).

Strong, broad O VI emission is visible in all Type 1 AGN.
27/73 of these also show strong, narrow O VI emission.
Over 50% (41/73) show intrinsic O VI absorption.

(35/75 reported by Dunn et al. 2007, 2008.)
No intrinsic Lyman.limits.
No intrinsic H, absorption. (N, <10 cm~=in NGC 4151.)




Absorption is Common at All Luminosities’

All FUSE AGN
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Outflow Velocity Increases with Luminosity
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Absorption-trough Frequency in SDSS Quasars

Narrow absorption
troughs are more
common.

Perhaps at low levels
the BAL and
associated absorbers
are related
phenomena.
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Bimodal Distribution of Absorption Line Widths

Knigge et al. (2008) B
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Where is the Outflowing Gas?

=

Thermally driven wind from the obscuring torus
(Krolik & Kriss 1995, 2001).

Gas should lie at radii of ~1 pc, dependings@ . al luminosity.
It should be visible both in emissionk yand in absorption.

1995; Proga 2000) i
Gas should lie at distances of 101> cm.
Terminal outflow velocities can be high, tens of km/s.




Monitoring Observations are the Key

“Tearﬁ NGC 3783” used Chandra, STIS, and FUSE to monitor NGC 3783 over
23 months from 2000 to 2002. '
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NGC 3783-UV vs. X-ray Absorption

From Gabel et al.
(2003):

The UV (Lyp)*
and X-ray (OVII)
absorption have
similar
kinematics.

Gabel et al. (2003) Radial Velocity (km/sec)




lonization/Recombination Times = Density

From Gabel et al. (2005): - ﬁ ompenent 1 1Y
; log(U log(Ny

-1.6 20.6

-1.0

Modeling the response to flux variations
gives the gas density.

Gas density + phot0|on|zat|on
the dlstance of the gas.
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C Il A\1176—a Density Diagnostic
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Most AGN Outflows Arise near the NLR

=

Two measures of density from the NGC 3783 campaign place the
gas at tens of parsecs from the nucleus (Gabel et al. 2005).

Monltorlng of absorption varlabll vl 1 also suggests
’ 997; Espex et al. 1998).

& similar to those of the NLR
(Crenshaw & Krae |

But, does the gas escape?

Velocities are high enough ...

But entrainment, mass loading, and confinement can prevent it—

. The extended NLR of NGC 4151 appears to be at a standstill at 290 pc
(Crenshaw et al. 2000).
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The Elvis Quasar Model (2000)

GEOMETRY
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Disk-wind Model for BALQSOs

Gallagher & Everett (2007)




A Thermally Driven Wind in NGC 37837
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The best-fitting set of models
are all distributed along the
vertical, marginally stable
branch of the equilibrium -

Several ionization stages of S and Si are all present.

Netzer et al. (2003)

curve, as suggested by Krolik
& Kriss (2001).




Summary

=

Outflows are common in AGN. More than half show outflowing
absorbing gas in both the UV and the X-ray.

Outflow velocities are typically hundreds tg s of km/s.

Outflows typically show a broad ranc : Ipe atures and ionization
.
Most UV absorption is

gas than that causingytk

1C. 7
‘ ‘
.
}‘}(

as|is'dueto higher density clumps embedded in an
X-ray absorbing wind?.
Possible origins for the outflowing gas range from the accretion disk to
the obscuring torus. There may well be two populations of absorbers
High-velocity, broad troughs may originate in a disk wind.

Lower velocity, associated absorbers may originate in a thermal wind from
the torus. |

But, the outflows may rarely escape the confines of the host galéxy




