Theoretical Calculations of the Inner Disk's Luminosity Scott C. Noble, Julian H. Krolik (JHU) (John F. Hawley, Charles F. Gammie)

> 37th COSPAR 2008, E17 July 16th, 2008

Steady-State Model: Novikov & Thorne (1973)

- GR model of radiatively efficient disks
- $F(r,a) \rightarrow T(r,a)$ and R_{in}

Observations $\rightarrow M_{BH}$, a_{BH}

Steady-State Model: Novikov & Thorne (1973)

Assumptions:

- 1) Stationary gravity
- 2) Equatorial Keplerian Flow
 - Thin, cold disks
 - Tilted disks?
- 3) Time-independent
- 4) Prompt, local dissipation of stress to heat
- 5) Conservation of M, E, L
- 6) Zero Stress at ISCO
 - Magnetic fields?
 - Need dynamic simulations!

For steady-state model context: Shafee, Narayan, McClintock (2008)

Previous Work

- De Villiers, Hawley, Hirose, Krolik (2003-2006)
- MRI develops from weak initial field.
- Significant field within ISCO up to the horizon
- Beckwith, Hawley, Krolik (2008)
 - Rad. Flux ~ Stress
 - Uncontrolled loss of dissipated energy

Krolik, Hawley, Hirose (2005)

Our Method: Simulations

• HARM:

Gammie, McKinney, Toth (2003)

- Axisymmetric (2D)
- Total energy conserving
- Modern Shock Capturing techniques (greater accuracy)
- Improvements:
 - 3D
 - More accurate (higher effective resolution)
 - Stable low density flows

 $\nabla_{\nu} F^{\mu\nu}$ 0

 $\nabla_{\mu} \left(\rho u^{\mu} \right) = 0$

 $\nabla_{\mu}T^{\mu}{}_{\nu}=0$

Our Method: Simulations

- Improvements:
 - 3D
 - More accurate (higher effective resolution)
 - Stable low density flows
 - Cooling function:
 - Control energy loss rate
 - Parameterized by H/R
 - t_{cool} ~ t_{orb}
 - Only cool when T > T_{target}
 - Passive radiation
 - Radiative flux is stored for selfconsistent post-simulation radiative transfer calculation

$$\nabla_{\nu}^{*} F^{\mu\nu} = 0$$

$$\nabla_{\mu} \left(\rho u^{\mu} \right) = 0$$

$$\nabla_{\mu}T^{\mu}{}_{\nu} = -\mathcal{F}_{\mu}$$

 $H/R \sim 0.1$ $a_{BH} = 0.9$

Our Method: Radiative Transfer

$$j~\propto~\mathcal{F}_{\mu}$$

- Full GR radiative transfer
 - GR geodesic integration
 - Doppler shifts

- Gravitational redshift
- Relativistic beaming
- Uses simulation's fluid vel.
- Inclination angle survey
- Time domain survey

Disk Thermodynamics

Disk Thickness

Departure from Keplerian Motion

Magnetic Stress

Fluid Frame Flux

Assume NT profile for r > 12M.

 $\Delta L = 4\% L$

Assume NT profile for r > 12M.

Assume no difference at large radius.

$\Delta L = 9\% L$

We now have the tools to self-consistently measure dL/dr from GRMHD disks

- 3D Conservative GRMHD simulations
- GR Radiative Transfer
- Luminosity from within ISCO diminished by
 - Photon capture by the black hole
 - Gravitational redshift
 - t_{cool} < t_{inflow}
- Possibly greater difference for a_{BH} < 0.9 when ISCO is further out of the potential well.</p>

Future Work

- More spins
- More H/R 's
- More H(R) 's

Time variability analysis

Impossible with steady-state models

EXTRA SLIDES

Accretion Rate

NT

HARM

Previous Work

- De Villiers, Hawley, Hirose, Krolik (2003-2006)
- MRI develops from weak initial field.
- Significant field within
 ISCO up to the horizon.

Hirose, Krolik, De Villiers, Hawley (2004)