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OUTLINE: 

1.  Basic facts about central black holes (MBH) and the ISM of early-type galaxies  

2.  A recent model for the coevolution of the ISM and the MBH: 

                  hydrodynamical simulations of spherical accretion including  
                                     radiative + mechanical feedback    
         (Ciotti & Ostriker 2007; Ciotti , Ostriker & Proga in prep.) 

3.     Resulting properties for the ISM and the MBH: comparison with observations   
                                                                                                                (Pellegrini et al., in prep.) 



Einstein’s observations (Fabbiano et al. 1992,  
Canizares et al. 1987) 

Basic facts 



  Origin of the ISM: evolving stars (Red Giants, PNe, SNe, …)  

   The rate of mass loss for a galaxy of mass M* is : 
           . 
           M* (t) ~ 10-11 LB(LB)  t(10 Gyrs)-1.3      M/yr  
   for a passively evolving stellar population, of age ~0.5 to over 13 Gyrs. 

   The stellar mass lost during the galaxy’s lifetime is >~10% of its initial value ! 

  Fate of the ISM:                                
     . 
    M*  is  heated by the thermalization of the kinetic energy  of stellar  motions + SNIa’s ejecta 

    develops a flow directed towards the galactic center  (e.g., Sarazin & White 1988, Ciotti et al. 1991,  

                                                                                                                                     David et al. 1991, Pellegrini & Ciotti 1998).  

    The size of the inflowing region increases for deeper potential wells (on average, larger LB) 

                   . 
 central fuelling  at a rate  M ~ 0.01 - few M/yr     
       can build up  1010 M   if undisturbed for many Gyrs… 



the answer could be  



Feedback modulated accretion 

(Binney & Tabor 1994 … Omma et al. 2004; Ciotti & Ostriker 1997… 2008;  Di Matteo et al. 2003,   
                                                                                                                                   Sijacki et al. 2007) 

Lacc ~ 1046 erg/s for accretion of 1 M / yr 
Lgrav ~ 1041 erg/s for extraction of 1 M / yr from the galactic potential well  

    THE ISSUE:  HOW and HOW MUCH  RADIATIVE + MECHANICAL ENERGY  

                                                      INTERACTS WITH the ISM 

           Can gas be displaced far from the galactic center  
                                                                    and even removed from the galaxy? 

            Ciotti, Ostriker & Proga (in prep.): 

      a high resolution hydrodynamical code,  with a detailed treatment of  
      radiative + mechanical energy input & transfer to the ISM 



•  GALAXY STRUCTURE: cuspy stellar model (Jaffe) + dark halo (Keeton et al. 07)  

                                                                                     + internal dynamics from Jeans equations 

•  stellar mass losses from stellar evolution theory 

•  SNIa rate  (Cappellaro et al. 1999) with temporal evolution of recent models (Greggio 05) 

•  RADIATIVE FEEDBACK:  
    Gas heating & cooling for photoionized plasma in equilibrium with average quasar SED  
                                                                                                                           (Sazonov et al. 2005)   
   Radiation pressure and absorption from radiative transport equation  

•  MECHANICAL FEEDBACK:  

    Quasar outflows (observed: Chartas et al. 03,07; Crenshaw et al. 03, Pounds et al. 03, Blustin et al. 07;  

                                                                                            modelled numerically: Proga 03, McKinney 06)  
•  Star-formation via conventional formalism 

CON: SPHERICAL SYMMETRY  

PROs:  ACCRETION & FEEDBACK EFFECTS consistently determined  
              and followed for the whole galactic evolution 



                            Recipes. 1.  MBH accretion 
MASS: 
                                                              .                 .         .         .        .                                           
inside the first grid point (2.5 pc) a disc is assumed :   Mdisc,gas = Min - MBH - MW - MSF 
  .        . 
 MBH = Mfeed / (1+ ηd),  with         .           . 

  ηd= Mfeed / 2MEdd  . 
MEdd = LEdd / 0.1 c2

 
so that :                                     . 
ηd <<1: gas accreted at Mfeed                                       . 
ηd >>1: gas accreted at 2MEdd 

Outside the first grid point , accretion is self-consistently determined. 

LUMINOSITY:             . 
LBH = ε  MBH  c2 

                       .            . 
where   ε  = 0.1 A m / (1+ A m)    ADAF-like radiative efficiency (Narayan & Yi 94) 

 .      .       . 
m = MBH/ MEdd 

A=100  

 .                        . 
m < 10-2 :   ε ~ 0.1 A m < 0.1  

so that: 
 .                         
m >10-2 :   ε ~ 0.1 

 . 
Mfeed = Mdisc,gas / τ , τ  = 2π/α √rdisc

3 / GMBH  ,   α =disc viscosity 
                         rdisc = MBH sphere of influence 



Recipes. 2.   Radiative heating & cooling rates 

Tx : AGN Compton temperature 

     From the Sazonov et al. 05 formulae for a plasma in photoionization equilibrium with the      
     radiation field of an average quasar SED, with spectral temperature  TX = 2 keV > TVIR. 

           Includes: bremsstrahlung losses (S1), Compton heating & cooling (S2),  
           photoionization heating plus line and recombination cooling (S3): 

ξ = ionization parameter 
  = L(r) / n(r) r 2 

where (all cgs): 

E=gas internal energy 



Recipes. 3.  MECHANICAL FEEDBACK 

[ 1. Shock waves originated by purely radiative feedback ] 

  2. AGN Winds 

                                                                            .                 .                                                                               
MASS: a fraction of disc mass Mdisc,gas is lost in a wind:   MW = ηW (l) MBH 

LUMINOSITY  (from 2-D hydro for radiatively driven winds, Proga et al. 1998): 
                 . 
 LW = εW(l ) MBH c2             l = LBH / LEdd 

         εW
max ~ few 10-4 to few 10-3   is the maximum wind efficiency  (for l =2),   

            vW ~ 104 km/s  

     The fraction of wind mass, momentum, energy deposited in the ISM at each r from a (phenomenological)      
     differential equation dependent on PISM(r) / Pwind( r).   Typically released within 100-300 pc. 

                        SUMMARIZING: 
                     For l   ~ 1       high ε ~0.1 , high εW ~ εW

max (  “AGN mode”  ) 
                     For l < 0.01     low ε < 0.1, εW ~ 0 



Representative model:  M* = 3x1011 M,  LB=5x1010 LB,  central σ = 260 km/s   
                                        Re=6.9 kpc (from fundamental plane)                                      
                                        M* = Mdark  within Re 

                                                            MBH,0 =3x108 M  (close to Magorrian relation) 

                      General evolution  

Initial conditions:  low density gas at virial temperature,   t0 = 2 Gyr (for the stellar population) 

Typical cycle 

        cold collapsing shell  accretion on MBH  feedback  

       (shock waves + new cold shell + new collapse … central hot bubble, matter pushed out,  
                                                huge degassing, accretion rate drops) 

            the central region cools, the galaxy starts replenishing again   a new infall      



 Hydro of an outburst     (Δt ~ 0.2 Gyrs)  

Δt=0.02 Gyrs : 

t1 : the shell has reached the  center  
    a radiative  shock is moving outward     
    it creates regions of hotter and colder gas,  
                               and  a new infalling shell        

      t2, t3: outward propagation of the second    
     larger outburst +  hot/dense region at the        
                                                          center 

t0: low density hot accretion 
    a denser/colder shell  
   is forming  (solid) 

………….… 
t0 
t1 

t2 

t3 



OBSERVATIONAL X-RAY PROPERTIES 

ISM: 

global T, L 
brightness profiles 

MBH: 

nuclear L 



Time evolution of gas emission and temperature 

Red: 0.3-2 keV 
Blue: 2-8 keV 

emission weighted T 
within the optical Re 

 decrements in kT :  
cold shell  and cold gas left  
by the passage of radiative  
shock waves 

sharp peaks in kT :  
 hot regions during outbursts  

Gas emissivity ne(r) nH(r) Λ(T,Z)      
with Λ(T,Z) estimated over 0.3-8 keV,  
for plasma with solar abundance  
(Grevesse & Sauval 1998) 
from APEC code within XSPEC 



Lx and kT observed for the hot ISM  (present time) 

Largest catalog of  ISM X-ray emission  
(mostly ROSAT observations,  
O’ Sullivan et al. 2001):  

Observed 0.3-8 keV emission weighted T  
within Re  (Athey 2007) : 

model at 
t~10 Gyrs  



1-2: cold shell forming (>~0.5 Gyr) 

3: shock moving outwards after a major burst  
Hot  gas at the center for ~ 2x107 yr           

4: galaxy has low density, 
subsonic perturbations at the galaxy 
 periphery 
(<~0.2 Gyr since outburst started)  

Brightness profiles pre-after burst  
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4 High-temperature, high-density phase  
at the center (3) very brief,  
unlikely to be observed. 
Disturbances as shells, ripples  
    lasting <~0.2 Gyrs 
       more likely to be observed   



   Depending on SNIa’s rate, central σ, dark matter,  

   bursts can take place even at present epoch 

             (though frequency difficult to estimate … duty cycle ~10-3  - 10-2 in the past few Gyrs) 

         Chandra revealed widespread hot gas disturbances in nearby early type galaxies  
                  (e.g.,  “hot gas gallery” of 54 normal ellipticals,  Diehl &  Statler 2008) 

 a few have very weak nuclear sources   
  (at optical, radio, X)  

& no evident jet activity  



          NGC3411 (O’Sullivan et al. 07)  

   cool shell 

T-map (XMM) 

R(arcsec) 

1’=19 kpc 



quiescent 

0.3-7 keV 

Loewenstein et al. (2001) 

 (x-scale for the Virgo  
           distance) 

preburst phase 
of models 

steady inflow  



LEdd 

Strong intermittencies at early times,  
   LBH close to LEdd 

Smooth, very sub-Eddington  
accretion at low redshift  
(with rare outbursts) 

Stellar mass loss rate secularly  
declines     time lag  
between outbursts increases 

Nuclear luminosities 

 . 
M*  . 

Mout 

 . 
MBH 

LBH 

  a negligible time in the (thin disk) phase of high luminosity 
                                                                                    .     .     .  
  most of the time in a “quiescent” phase  ( l = LBH / LEdd  < 10-2  ,  m = MBH/MEdd< 10-2 ) 
  (see also Hopkins et al. 06) 

  At the end, MBH=8x108 M      (grown by 2.5x instead of 100x !) 





For many of the best studied nuclei   
Lbol/LEdd is often much lower …   

From Palomar survey objects with nuclear Lx measured: 

Average Lbol/LEdd ~10-5 

Seyferts 

LINERs 

Ho (2008)  

Lbol from L(2-10 keV)         
(with Lbol/Lx=83, 28, 16 for QSO, Sey, LLAGN) 

LEdd from MBH-σ  



For a sample of “quiescent” nuclei of the local Universe : 

LX,nuc from Chandra observations 

MBH from specific (HST) 
measurements 

 . 
MBondi from Chandra observations 
(ISM ρ and T close to accretion radius) 

   l  ~ 10-5 – 10-8      (<10-4 of models) 

(Pellegrini 2005, updated; 
 see also Gallo et al. 2008) 



     . 
    MBH must be further reduced: 

         central stellar profile less cuspy than Jaffe   

            angular momentum at large radii (net flow reduced, e.g., Proga & Begelman 2003) 

            convective motions or coronal winds transport energy and mass at large radii 

              (Narayan & Yi 94,  Stone et al. 99, Blandford & Begelman 1999, de Villiers et al. 2003,  

                 McKinney & Gammie 04)                                                                                                                                                

              this has been found important for  SgrA* (Quataert & Gruzinov 00, Yuan et al. 04)                        



   Observational properties of a new class of models for joint MBH & ISM evolution: 

    feedback typical of high L/LEdd phases (radiative & AGN wind)    + SNIa’s  

    effective in solving cooling flow problem AND maintaining “small” MBH masses  
         (gas lost in outflows or starbursts)    

Conclusions 



Hot ISM: 

•   Global Lx, T of the models at an age of ~10 Gyrs compare well with those of local galaxies. 

    Large dispersion in observed Lx, T  for a given LB : different phases in the periodic activity ?     

•   Disturbances in the hot gas produced by an outburst (T-profile, brightness profile) are  

      detectable with Chandra  
      last for <~0.2 Gyrs. 

   Could match part of widespread disturbances observed in galaxies of the local Universe. 

Conclusions 



Nuclear luminosities: 

•    At an age of ~10 Gyrs the model MBHs are very sub-Eddington (L/LEdd ~10-4),   
    close to peak L/LEdd ~10-5

  observed (for galaxies with measured LX,nuc) 

•    Many nuclei (among the best observationally constrained) have L/LEdd < 10-4  
     in the local Universe: 

       additional reduction of the mass available for accretion ? 

       is this reduction due to a thermally driven wind from an ADAF?  

       is this wind producing another form of feedback, affecting the ISM evolution? 

Conclusions 


