First results from the AstroSat mission

A R Rao

Tata Institute of Fundamental Research, India 2016 Oct 19

6th Nepal meeting – Kathmandu

2013 Kathmandu Meeting ...

- Launch: Second quarter of 2014
- Wide band X-ray spectroscopy is the strength of AstroSat.
- Useful to pin down the spectral components and have a definitive geometrical paradigm for the emission.
- New features (individual photon counting and possibly polarization) will enhance the observation capabilities.

Launch: 2015 September 28 All instruments working well X-ray spectroscopy: work in progress X-ray Polarization: definitely yes.

Participating Institutes... ISRO Centers Satellite, rocket, T&E, Launch, Orbit, SSM, Level 1&2 software + overall management Research Institutes Tata Institute of Fundamental Research LAXPC, CZTI, SXT Indian Institute of Astrophysics UVIT **IUCAA SSM, CZTI RRI LAXPC** PRL, Universities,

• Leicester Uty (SXT), Canadian Space Agency (UVIT)

AstroSat

- IRS (Indian Remote Sensing) Class
- Launch PSLV C30 from SHAR
- Altitude : 650 km.
- Inclination : 6 deg.
- Mass 1550 kg. (780 kg. Payloads)
- Power : 2200 watts
- 200 Gb (210 Mb/sec)
- Satellite Positioning System for orbit and time data
- Payload pointing (3σ): 0.05 degree
- Slew rate : 0.6 deg/sec
- Launch: 2015 September 28
- Operational life > 5 years

Detector	Photon-counting (Intensified) CMOS imagers)	
Optics	Twin Ritchie Chretian 2 mirror system	evt	
Bandwidth	130-180 nm	371	
	200-300 nm		
	320-550 nm		
Angular Resolution	1.8 arc sec		

Detector	X-Ray CCD at the focal plane
Optics	Conical foil (Wolter-I) Mirrors
Bandwidth	0.3 - 8 keV
Energy Resolution	2.34% @ 5.9 keV
Angular Resolution	2 arc min (HPD)

AstroSat

25% @ 6 keV

	Detector	Proportional counter
	Optics	Collimator
	Bandwidth	3 - 80 keV
	Energy Resolution	12% @ 22 keV
	Time resolution	10 microsec
	Effective area	8000 cm2
٠CZT	1	

Detector	CdZnTe Detector
Optics	2-D coded Mask
Bandwidth	15 - 100 keV
Energy Resolution	6% @100 keV
Time resolution	20 microsec 5

The first year of AstroSat

- Six months PV phase
- Six months GT
- 30 Ms
 - Efficiency :
 - ~10% (UVIT) to
 - ~ 55% (CZTI)
- 140 sources, 337 targets

Instrument Performance: LAXPC

• All 3 LAXPC units performing as designed.

Yadav et al. 2016 (ApJ in press; arXiv:1608.07023); Yadav et al. in prep

Instrument Performance: UVIT NGC 2336

Tandon 2016

Instrument Performance: SXT

• Tycho SNR

Instrument Performance: SSM

Crab

GRS 1915+105 Beta Class. Ability to stare at a source for a long time.

Ramadevi et al. 2016; Ramadevi 2016

Instrument Performance: CZTI

Image

- Crab spin down (36 ns/day) detected clearly in one day observation
- X-ray pulse known to lead radio pulse by ~300 µs (Integral)
- CZTI pulse leads radio by ~490±150 µs
- Absolute time accuracy: ~200 µs

Spectrum

Pulse profile

AstroSat Results

- GRS 1915+105:Yadav et a.ApJ, in press 1608.07023
- GRB 151006A: Rao et al. . ApJ, in press 1608.07388
- AstroSat: Rao, Singh Bnhattacharya, SRT, 1608.06051
- In-Orbit Performance: SPIE 9905-45,46,47,48 (1609.00538)
- Instrument papers, JAA, sub., 1608.03408; 1608.06038
- Cyg X-3: Bhargava et al., ApJ, sub.
- Two ATels: Ramadevi et al (8185), .Yadav et al. (9515)
- Twelve GCNs
- Many ``in preparation"

GRS 1915+105: X Class

AstroSat CZT Imager detects GRB 151006A.

- \succ On the first day of operation.
- Incident at 60°.7 from vertical $(\theta_x = 34^\circ; \theta_y = 58^\circ)$
- > Material around CZT detectors are transparent to X-rays above 100 keV.
- Significant detection area for offaxis sources.

8 - 25 keV GBM 15 - 25 keV 841

50 - 100 keV BAT

100 - 200 keV CZT

200 - 500 keV GBM/b

0.30

0.25

0.20

0.15

0.10

0.02

100

Bhargava et al. 2016; Yadav (2016)

4U 1630-472 : 2016 outburst

Crab Polarization

Vadawale et al. 2016b (In prep.)

F 120 Poharizo

W

Energy (keV)

A few key research areas ... Cross-spectral calibration

Millisecond ``events"

Polarisation

Gamma-ray Bursts

AstroSat: 650 km; 6° Fermi: 565 km 25°.6 Swift: 600 km 20°

- First 10 months data. 214 total.
- ~I50 Fermi; ~60 Swift; 40 50 CZTI
- Full AstroSat mass model
- > Possible GW counterparts.

Connaughton et al. 2016 See also Griener et al. 2016

Cygnus X-I: black hole binary

Cygnus X-I: detection of Polarisation

Conclusions

- > All instruments are performing as planned
- > High energy timing response and hard X-ray polarization are the key features
- > Regular observations are carried out
- > Robust data analysis pipe line is being developed

• Contacts:

PI :	S Seetha	seetha@isro.gov.in
LAXPC:	JS Yadav	yadav@tifr.res.in
UVIT:	S.N.Tandon	sntandon@iucaa.in
SXT:	K. P. Singh	singh@tifr.res.in
CZTI:	A.R. Rao	arrao@tifr.res.in
SSM:	M.C. Ramadevi	ramadevi@isac.gov.in a

AstroSat Science Support Cell: astrosat-ssc.iucaa.in dipankar@iucaa.in