

Extreme Jet Ejections from the Black Hole X-ray Binary V404 Cygni: The Unique (Sub-) Millimetre Perspective

Alex Tetarenko University of Alberta

J.C.A. Miller-Jones (ICRAR), G.R. Sivakoff (UAlberta), and the JACPOT XRB Team

June 2015 Outburst

- On June 15, 2015 X-ray flaring detected by Swift BAT, MAXI and INTEGRAL.
- Extraordinary mutli-wavelength flaring activity followed.
- Brightest BHXB outburst in the past decade.

The "Golden Data Set"

Unprecedented multiwavelength view (9 different frequencies!)

- Flares reach extremely bright flux levels
- Lower v are delayed, smoothed version of higher v
- (Sub-)mm substructure not visible in cm emission

Twin Bi-polar Ejection Modely

 Assume an underlying steady jet characterized by a classic (broken) power-law spectrum

Twin Bi-polar Ejection Modely

2. Assume a conical jet with constant opening angle

Twin Bi-polar Ejection Model

3. Assume our light curves are the superposition of emission from multiple ejection events.

Twin Bi-polar Ejection Modely

4. Inject a population of electrons, with a power law energy distribution, into a spherical cloud threaded by a magnetic field

Twin Bi-polar Ejection Modely

5. Allow sphere to expand adiabatically, keeping electrons and the magnetic field in equipartition

Twin Bi-polar Ejection Model

6. Clouds are moving at relativistic speeds, and inclined to our line of sight, so include beaming and geometric time delays

Line of sight to observer

Light Curve Modeling

- Simultaneously fit all frequencies (5 - 350 GHz) with MCMC algorithm.
- 8 pairs of ejecta!
 - opening angle of 5°
 - β~0.2 0.6 c (Γ=1.0-1.2)
 - ejection times
- Sub-mm data is crucial in our modeling!

The state of the art: 1990s Daily observations of bright outbursts

The state of the art 2000s: 2-3 hrs per epoch over 42 days

Image credit: Rupen, Mioduszewski, Walker & Taylor

Real time VLBI!

- Rapid evolution on minute timescales
- 2 min epochs over 5 hours of observation (>100 frames!)

$$RA_{ij} = \mu_{RA,j} \left(t_i - t_{eject} \right) + Offset_{RA,i}$$

$$Dec_{ij} = \mu_{Dec,j}(t_i - t_{eject}) + Offset_{Dec,i}$$

$$RA_{ij} = \mu_{RA,j} \left(t_i - t_{eject} \right) + Offset_{RA,i}$$

$$Dec_{ij} = \mu_{Dec,j}(t_i - t_{eject}) + Offset_{Dec,i}$$

- 1. **Identify pairs**
- Measure proper 2. motions
- Estimate ejection 3. times
- Δ

$$\beta = 0.33^{+0.18}_{-0.09} \qquad \beta = 0.2^{+0.4}_{-0.2}$$
$$i = 37.1^{+10.0}_{-15.9} \qquad i = 80.0^{+5.9}_{-12.8}$$
$$\beta = 0.2^{+0.1}_{-0.1}$$
$$i = 50.1^{+14.0}_{-11.2}$$

- Identify pairs 1.
- 2. Measure proper motions
- 3. Estimate ejection times

4. Uniquely solve for
$$\beta$$
,
 $\beta = 0.33^{+0.18}_{-0.09}$
 $i = 37.1^{+10.0}_{-15.9}$
 $\beta = 0.2^{+0.4}_{-0.2}$
 $i = 80.0^{+5.9}_{-12.8}$
 $\beta = 0.2^{+0.1}_{-0.1}$
 $i = 50.1^{+14.0}_{-11.3}$

ALBERIA

Relationship to X-ray Emission

- Predicted ejection times do not appear to correlate well with X-ray emission
- Ejections could lag X-ray peaks?

Tetarenko et al., 2016, in prep

Data from Rodriguez et al., 2015

Relationship to Optical Emission

Hints of correlation, but unfortunate holes in coverage

Mariko Kimura, et al. 2015

High Time Resolution Measurements

- Our team has developed custom timing scripts for interferometric data that runs in CASA on Amazon Web Services
- Produces light curves on user specified time bin
- Many customizable options:
 - UV or image plane
 - Object detection
 - And many more...
- Will be available soon, stay tuned!

https://github.com/Astroua/AstroCompute_Scripts

Summary

- Analysis is ongoing
- Simultaneous multi-wavelength coverage essential to unlocking complicated physics.
- Rapid response and specialized observing techniques, like sub-arrays and VLBI, make this possible.
- mm/sub-mm data provides a unique, more detailed view of the jet compared to cm.

Thank you!

Alex Tetarenko – Nepal October 2016 11:15:32