Gravitational wave detection from stellar mass black hole binaries

M. Benacquista University of Texas Rio Grande Valley Center for Gravitational Wave Astronomy

GW150914

• The Center for Gravitational Wave Astronomy is now a center for a real discipline.

- Laser Interferometer Gravitational-wave Observatory (LIGO) has observed gravitational waves from the inspiral and coalescence of at least two stellar-mass black hole binaries.
- Details of the generation of waves at the source and detection of the waves at the interferometer.
- Using the waveform to determine the properties of the source.
- Prospects for detection with Laser Interferometer Space Antenna (LISA)

Outline

- Gravitational radiation emission from the source.
- Gravitational radiation detection from interferometers.
- Parameter estimation.
- Prospects for eLISA.

Emission from the source

To the detector

+

Х

http://www.soundsofspacetime.org/spinning-binaries.html

Can measure initial spins through spin-orbit coupling if enough cycles of inspiral are measured.

Interferometric Detection

Properties of the binary black hole merger GW150914

6th Nepal Meeting, Kathmandu

Histogram of Inclinations

6th Nepal Meeting, Kathmandu

Frequency (Hz)

Prospects for eLISA

If a binary black hole merges, this implies that there are many more binary black holes at lower frequencies.

These will be eLISA sources

MB, Hinojosa, Mata, Belczynski 2015

• Frequency evolution of a binary: $\dot{f} = k_0 f^{11/3}$

$$k_0 = \frac{96}{5} \left(2\pi\right)^{8/3} \frac{G^{5/3}}{c^5} \frac{m_1 m_2}{M^{1/3}}$$

• Number density of binaries in frequency range df:

$$dn = \frac{\eta}{k_0} f^{-11/3} df$$

• Number density of binaries above *f*_{min}:

$$n = \frac{\eta}{k_0} \frac{3}{8} f_{\min}^{-8/3}$$

Volume to 30 Mpc and minimum frequency of 1 mHz.

Merger rate in events/Gpc³/yr.

All systems with same chirp mass.

The number of systems in this volume is numerically equal to the merger rate.

Expect more than 2-400 systems within 30 Mpc in the eLISA band.

Sesana 2016

eLISA error box superimposed on a chart of the Virgo cluster, centered on NGC 4365 for a typical BBH signal.

6th Nepal Meeting, Kathmandu

