Electromagnetic counterparts to gravitational wave sources

M.Branchesi

(Università di Urbino/INFN Sezione di Firenze)

INTERNATIONAL CONFERENCE ON SHINING FROM THE HEART OF DARKNESS: BLACK HOLE ACCRETION AND JETS

Kathmandu, Nepal, October 16 - 21, 2016

The era of gravitational wave astrophysics

September 14, 2015October 12, 2015CONFIRMEDCANDIDATE

Low latency search Off-line search

December 26, 2015 CONFIRMED

Low-latency search

LIGO's first observing run

September 12, 2015 - January 19, 2016

September 2015

October 2015

November 2015

December 2015

January 2016

SNR=24SNFAR < 6 x 10^{-7} yr⁻¹FAR 0Significance > 5.3 σ Significance

SNR=9

FAR 0.37 yr⁻¹ Significance = 1.7 σ SNR=13 FAR < 6 x 10^{-7} Significance > 5.3 σ

Parameters of the binary stellar-mass BH systems

Primary mass
 $m_1^{\text{source}}/M_{\odot}$ $36.2^{+5.2}_{-3.8}$ $14.2^{+8.3}_{-3.7}$ 23^{+18}_{-6} Secondary mass
 $m_2^{\text{source}}/M_{\odot}$ $29.1^{+3.7}_{-4.4}$ $7.5^{+2.3}_{-2.3}$ 13^{+4}_{-5}

LVC arXiv:1606.04856 LVC 2016 Phys. Rev. Lett. 116, 241103 LVC 2016 ApJL, 818, 22 - Component masses

To understand how BBH systems form and evolve crucial to identify the host galaxy and study the GW source environment

Challenges to identify the host galaxy

Distances						
	LVC	arXiv:160	6.04856			
Event	GW150914	GW151226	LVT151012			
Luminosity distance $D_{\rm L}/{ m Mpc}$	420^{+150}_{-180}	440^{+180}_{-190}	1000^{+500}_{-500}			

Sky Localizations 90% credible areas of about 600 deg² GW150914 1600 deg² LVT15012 1000 deg² GW151226

Image credit: LIGO/L. Singer/A. Mellinger

In the volume of the Universe corresponding to GW150914, LVT151012, GW151226 there are **10⁵-10⁶** galaxies

The multi-messenger astronomy is required.... ASTROPHYSICAL SOURCES emilting transient GW signals detectable by LIGO and Virgo (10-1000 Hz)

Coalescence of binary system of neutron stars (BNS) and NS-BH

- Orbital evolution and GW signals accurately modeled by post-Newtonian approximation and numerical simulations
 → precise waveforms
- Energy emitted in GWs (BNS): $\sim 10^{-2} M_o c^2$

Core-collapse of massive stars

- Modeling of the GW shape and strength is complicated \rightarrow uncertain waveforms
- Energy emitted in GWs: $\sim 10^{-8} - 10^{-5} M_o c^2$ for the core-collapse $\sim 10^{-16} - 10^{-6} M_o c^2$ for isolated NSs

Isolated NSs instabilties

Electromagnetic emissions

Core-collapse of massive stars NS-NS and NS-BH mergers Short Gamma Ray Burst (sGRB) X-ray/UV SBO Optical Ultra-relativistic **Beamed emission** outflow Radio + Long GRB Palomar Sub-relativistic Isolated NS instabilities dynamical ejecta **Isotropic** emission macronova Soft Gamma Ray Repeaters and Anomalous X-ray Pulsars disk wind outflow Spin-down luminosity

BH-BH mergers

some mechanisms for EM emission recently discussed Loeb 2016 ; Perna et al. 2016 ; Zhang et al. 2016

Radio/gamma-ray Pulsar glitches

NS-NS and NS-BH inspiral and merger

Fernandez & Metzger 2016, ARNPS, 66

The merger gives rise to:

- dynamically ejected unbound mass
- ejected mass gravitationally bound from the central remnant either falls back or circularizes into an accretion disk

NS-NS binary → <u>unbound mass</u> of 10⁻⁴ -10⁻² Mo ejected at 0.1-0.3c, which depends on total mass, mass ratio, EOS NS and binary eccentricity

NS-NS and NS-BH inspiral and merger

Fernandez & Metzger 2016, ARNPS, 66

The merger gives rise to:

- dynamically ejected unbound mass
- ejected mass gravitationally bound from the central remnant either falls back or circularizes into an accretion disk

NS-BH binary \rightarrow <u>unbound mass</u> up to 0.1 Mo depends on ratio of the tidal disruption radius to the innermost stable circular orbit If < 1 \rightarrow NS swallowed by the BH no mass ejection

If > 1 NS \rightarrow tidally disrupted, long spiral arms

which depends on the mass ratio, the BH spin and the NS compactness

See Kawaguchi et al. 2016, ApJ, 825, 52

NS-NS and NS-BH inspiral and merger

Fernandez & Metzger 2016, ARNPS, 66

• Ejected material gravitationally bound from the central remnant can fall back or circularizes into an accretion disk

Disk mass up to ~ **0.3Mo** Disk mass depends on the mass ratio of the binary, the spins of the binary components, the EOS, and the total mass of the binary

For NS-BH see e.g. Foucart 2012, PhRvD, 86; Maselli & Ferrari, PhRvD, 89; Pannarale & Ohme, ApJL, 791

> Outflow mass and geometry influence the EM emission

Central remnant of NS-NS or NS-BH merger

The central remnant influences GW and EM emission

What is central remnant?

- It depends on the total mass of the binary
- The mass threshold above which a BH forms directly depends on EOS

GWs and photons provide complementary insight into the physics of the progenitors and their environment

- Mass
- Spins
- Eccentricity
- NS compactness and tidal deformability
- System orientations
- Luminosity distance

EM emission

- Beamed and isotropic EM emissions
- Energetics
- Nuclear astrophysics
- Source enviroment
- Precise (arcsec) sky localization
- Host galaxy
- Redshift

GRBs emission - Fireball Model

Kinetic energy of the relativistic jet converted into radiation Mjet = 10⁻⁷-10⁻⁵ Mo, Γ≥100, E=10⁴⁸-10⁵¹ erg

How many on-axis/off-axis short GRB?

expected times 1.5 for face-on systems)

sGRB rate \rightarrow NS-NS aLIG0/Virgo detection rate

Assuming NS-NS progenitor of short GRB:

 $R_{NS-NS} = R_{GRB} / (1 - \cos(\theta j))$

For $\theta j = 10 \text{ deg} \rightarrow R_{NS-NS}$ (200* Mpc) = 0.4-20 yr⁻¹

For $\theta j = 30 \text{ deg} \rightarrow R_{NS-NS}$ (200* Mpc) = 0.04-2 yr⁻¹

Macronova/Kilonova-Radio remnant

Dynamically unbound ejected mass during NS-NS NS-BH mergers at sub-relativistic velocity (0.1-0.3 c)

RADIO REMNANT

long lasting radio signals (years)

produced by interaction of sub-relativistic outflow with surrounding matter

Hotokezaka arXiv:1605.09395; Piran et al. 2013, MNRAS, 430

r-process

nucleosynthesis of heavy nuclei

radioactive decay of heavy elements

Power MACRONOVA short lived IR-UV signal (days)

Kulkarni 2005, astro-ph0510256; Li & Paczynski 1998, ApJL, 507 Metzger et al. 2010, MNRAS, 406; Tanaka et al. 2014 ApJ, 780; Barnes & Kasen 2013, ApJ, 775. See Kasen et al. 2015, MNRAS, 450 for the accretion disk wind outflow component.

Possible HST kilonova detection for short GRB130603B after 9.4 days (Tanvir et al. 2013, Nature ,500)

X-ray emission from the long-lived NS remnant

- X-ray afterglow radiation produced by spindown energy extracted from the NS prior to collapse, slowly diffusing through optically thick environment composed of a pulsar wind nebula (PWN) and outer shell of ejected material
- signal peaks at 10²-10⁴ s after the merger
- Iuminosities 10⁴⁶-10⁴⁹ erg/s
- mostly in the soft X-rays (0.2-10 keV)

Siegel & Ciolfi 2016, ApJ, 819, 14 Siegel & Ciolfi 2016, ApJ, 819, 15

NS-NS merger EM-emissions

Different timescale

Multi-messenger searches

GRB prompt emission, SN explosion in local galaxies, flares SGR, pulsar glitches, low and high energy neutrino \rightarrow GW TRIGGERED ANALYSIS

Known event time and sky position:

- → reduction in search parameter space
- → gain in search sensitivity

Unmodeled GW burst (< 1 sec duration) Arbitrary waveform → Excess power

Compact Binary Coalescence Known waveform → Matched filter Kochanek and Piran 1993, ApJL, 417

Abadie et al. 2012, ApJ, 760

Aasi et al. 2014, PhRvL, 113

Abadie et al. 2012, ApJ, 755

Adrián-Martínez et al. 2013, JCAP Aartsen et al, PhysRevD, 90, 102002

Off source On source Off source

Multi-messenger searches

Low-latency GW data analysis pipelines to promptly identify GW candidates and send GW alert to obtain EM observations

GW candidates Sky Localization

EM facilities

Event validation

Low-latency Search to identify the GW-candidates

Parameter estimation codes

LIGO-H LIGO-L

Virgo

Matched filter with waveforms of compact binary coalescence

Software to

a few min

- select statistically significant triggers wrt background
- check detector sanity and data quality
- determine source localization

→ Hours,days

→ 15/30 min

GW candidate

updates

Hunt the elusive EM-counterpart!

24

The first multi-messenger campaign including GW observations

Gamma and X-ray satellites

GW150914

EM follow up observations and archival searches

> **Twenty-five teams** of observers responded to the GW alert

The EM observations involved satellites and ground-based telescopes around the globe spanning 19 orders of magnitude in frequency across the EM spectrum

BB	H Merger) GW AI	ert				
	Initial GW Burst Recovery	Ini GCN (itial Circular			Updated G (identified as)	CN Circular BBH candidate)	Final sky map
High-energy	Fermi GBM, LAT, MAXI, PN, <i>INTEGRAL</i> (archival)		Swift XRT	Swift XRT				<i>Fermi</i> LAT, MAXI (ongoing)
Optical/NIR	BOOTES-3 MASTER	<i>Swift</i> UYC Pan-STARR51	OT, SkyMapp I, KWFC, QU	oer, MAS UEST, DE	TER, TOROS, ⁷ ECam, LT , P20	TAROT, VST, iP' 0, Pi of the Sky, l	TF, Keck , Pan-STARI PESSTO, UH	RS1 TOROS
Radio			М	WA	ASKAP, LOFAR	VISTA ASKAP, MWA	VLA, LOFAR	VLA, LOFAR VLA
	10	0 ⁰	I	•	<mark>.</mark>	10 ¹	, , II ,	10 ²
Archiva	searches			$t-t_{\rm merg}$	_{ger} (days)	EM fol	low up	

LVC+astronomers, ApJL, 826, 13 LVC+astronomers ApJS, 225,8 Connaughton et al. ApJL, 826, 6 Savchenko et al. 2016 ApJL 820, 36 Fermi-LAT collaboration ApJL, 823,2 Hurley et al. ApJL, 829, 12 Evans et al. MNRAS 460, L40 Morokuma et al. PASJL, 68, 9 Lipunov et al. arXiv:1605.01607 Soares-Santos et al. ApJL, 823, 33 Annis et al. ApJL, 823, 34 Smartt et al. MNRAS, 462, 4094 Kasliwal et al. ApJL, 824, 24 Diaz et al. ApL 828, 16 Greiner et al. ApJL, 827, 38 Tavani et al. ApJL, 825, 4 Troja et al. ApJL, 827, 102

Sky map coverage

LVC+astronomers ApJL, 826, 13 LVC+astronomers ApJS, 225, 8

- Covered sky map contained probabilty: 100% gamma-ray 86% radio 50% optical
- Candidate counterparts rapidly characterized
- In the optical, candidate counterparts identified to be normal population SNe, dwarf novae and AGN

Fermi-GBM \rightarrow weak signal of 1 sec 0.4 s after GW15014 fluence(1 keV-10 MeV) = 2.4 × 10⁻⁷ erg cm⁻²

FAR 4.79×10^{-4} Hz, FAP 0.0022

(Connaughton et al. 2016 ApJL, 826)

INTEGRAL → no signal but stringent upper limit

(Savchenko et al. 2016 ApJL, 820)

GW151226

Thirty-one groups responded to the GW alert:

High-energy and Very high-energy → Swift, XMM-Slew, MAXI, AGILE, Fermi, CALET, CZTI, IPN, MAGIC, HAWC

Optical-NIR \rightarrow MASTER, GRAWITA, GOTO, Pan-STARRS1, J-GEM, DES, La Silla–QUEST, iPTF, Mini-GWAC SVOM, LBT-Garnavich, Liverpool Telescope, PESSTO, VISTA-Leicester, Pi of the Sky observations, LCOGT/UCSB, CSS/CRTS, GTC

Radio \rightarrow VLA-Corsi, LOFAR, MWA

GW151226

- Large portions of the GW sky map observed
- Candidate counterparts rapidly characterized
- In the optical, candidate counterparts identified to be normal population SNe, dwarf novae and AGN
- No EM counterpart reported

GCNs: http://gcn.gsfc.nasa.gov/gcn3_archive.html

The follow-up campaign sensitive to emission expected from BNS mergers at 70 Mpc range

The widely variable sensitivity across the sky localization is a challenge for the EM counterpart search

Prospects of observing and localizing GWs in the next LIGO and VIRGO scientific runs

BBH merger rate based on 01 observations

9-240 Gpc-3

Number of expected highly significant detections (FAR < 1/century)

O2 → ~10 BBH events (O2 observing run 2016-2017 6 months) O3 → ~ 35 BBH events (O3 observing run 2017-2018 9 months)

LVC arXiv:1606.04856

Sky localization with Virgo

Actual estimates

Simulated estimates with Virgo

No detection of either NS-NS or NS-BH mergers in 01

Reached distance range:

- 70 Mpc for NS-NS 1.35±0.13 M_{\odot}
- **110 Mpc** for NS 1.4 M_o -BH 5 M_o

LVC 2016, arXiv:1607.07456

Upper limits on the merger rates in the local Universe:

- < 12600 Gpc⁻³ yr⁻¹ for NS-NS 1.35±0.13 M_{\odot}
- < 3600 Gpc⁻³ yr⁻¹ for NS 1.4 M_{\odot} -BH 5 M_{\odot}

The upcoming Advanced LIGO and Virgo observing runs would place significant constraints on the merger rates

Prospects of Observing and Localizing GWs

LVC 2016, LRR, 19, 1

Observing schedule, sensitivities, and source localization for BNS

Epoch		2015 - 2016	2016 - 2017	$2017\!-\!2018$	2019 +	2022+ (India)
Estimated run durat	tion	4 months	6 months	$9 \mathrm{months}$	(per year)	(per year)
Burst range/Mpc	LIGO Virgo	40-60	$60\!-\!75\20\!-\!40$	$75 - 90 \\ 40 - 50$	$105 \\ 40\!-\!80$	105 80
BNS range/Mpc	LIGO Virgo	40-80	80 - 120 20 - 60	$120 - 170 \\ 60 - 85$	$200 \\ 65 - 115$	200 130
Estimated BNS detec	tions	0.0005 - 4	0.006 - 20	0.04 - 100	0.2 - 200	$0.4\!-\!400$
90% CR % within median	5 deg^2 20 deg^2 n/deg^2	< 1 < 1 480	2 14 230	> 1-2 > 10 	> 3-8 > 8-30 —	> 20 > 50
searched area % within media	5 deg^2 20 deg^2 n/deg ²	6 16 88	20 44 29			

Multi-messenger astronomy with the advanced GW detectors

GWs

- Mass
- Spins
- Eccentricity
- NS compactness and tidal deformability
- System orientations
- Luminosity distance
- Compact object binary rate

EM emission

- Energetics
- Magnetic field strength
- Precise (arcsec) sky localization
- Host galaxy
- Redshift
- Nuclear astrophyisics

- ightarrow To confirm the short GRB progenitor
- ightarrow To probe geometry of the systems and emission models
- ightarrow To probe birth and evolution of compact objects
- ightarrow To investigate the origin of the heavy elements in the Universe
- \rightarrow To probe the NS equation of state