X-ray reverberation in accreting black hole systems

Barbara De Marco

Max-Planck-Institut für Extraterrestrische Physik

In collaboration with G. Ponti

Plan of the talk

What is the aim of X-ray reverberation?

What are the evidences for X-ray reverberation in AGN?

Can we use reverberation to constrain the (evolving) accretion flow geometry in BHXRBs?

Astrophysical BHs across the mass scale

AGN 10⁵⁻¹⁰ M_•

Different scales Same accretion mechanism

BHXRB 5-15 M_☉

 M_{BH}

The X-ray spectrum

Standard disc/thermal

[e.g. Shakura & Sunyaev '73 Novikov & Thorne '73]

The X-ray spectrum

The X-ray spectrum

What is the aim of X-ray reverberation?

Open questions: what's the geometrical distribution of the accreting gas?

X-ray source

Disc truncation

some hybrid structure?

Geometry from Fe line spectroscopy

Line profile sensitive to disc radius and coronal illumination [e.g. Fabian+'89; Wilkins & Fabian '11]

Geometry from Fe line spectroscopy

Line profile sensitive to disc radius and coronal illumination [e.g. Fabian+'89; Wilkins & Fabian '11]

Difficulties in disentangling broad features from the continuum [e.g. Bhayany & Nandra '11; Mantovani+'16]

Reverberation: independent method to constrain geometry

Commonly used in the UV/optical/IR to map BLR and outer disc in AGN [e.g. Peterson +'04; Edelson +'15; Shappee +'14]

Reverberation in the X-ray band can be used to map the geometry of the corona and of the inner accretion flow [review Uttley+'14]

Reverberation: independent method to constrain geometry

Goal: determine the transfer function of the system \rightarrow encodes information about the geometry

What are the evidences for X-ray reverberation in AGN?

FeK line reverberation: predictions

Fabian+'89; Stella '90; Matt & Perola '92; Campana & Stella '93

[Reynolds+'99, Young & Reynolds '00]

FeK line reverberation: predictions

Fabian+'89; Stella '90; Matt & Perola '92; Campana & Stella '93

Early attempts to observe X-ray reverberation failed e.g. Reynolds+'00; Vaughan & Edelson '01

 t_3

[Reynolds+'99, Young & Reynolds '00]

Hard lags common to AGN and BHXRBs

Kotov +'01 showed hard lags in BHXRBs suggest inward propagation of M perturbations [Lyubarskii '97]

Hard lags common to AGN and BHXRBs

Kotov +'01 showed hard lags in BHXRBs suggest inward propagation of M perturbations [Lyubarskii '97]

And AGN? Problems related to requirement of extended corona Alternative scenarios: large scale scatterer [e.g. Miller + '11; Turner + '16; Miller's talk]

or large hard lags from compact corona [Uttley & Malzac in preparation]

Prominent when Fe abundance is high

(first tentative detection in Ark 564 [McHardy+'07])

$$t = r_g/c = GM/c^3$$

X-ray reverberation common in AGN?

XMM archival data of Radio quiet, X-ray unobscured, variable AGN, with known BH mass (CAIXAvar sample [Ponti+'12])

X-ray reverberation common in AGN?

XMM archival data of Radio quiet, X-ray unobscured, variable AGN, with known BH mass (CAIXAvar sample [Ponti+'12])

[*De Marco+'13*]

Reverberation lag vs BH mass correlation in AGN

Corona is compact and the disc likely extends down to the ISCO [consistent with microlensing results e.g. Chartas+'08]

Reverberation in the Fe K band

Inferred distances consistent with constraints from soft lags

reprocessing from the same regions of the disc

Wrap-up

Global studies of X-ray reverberation suggest disc-corona geometry similar in radio quiet AGN, favouring a compact corona and a disc extending down to small orbits

Future

Building self consistent models [e.g. Wilkins+'16; Chainakun+'16; Mastroserio's talk]

Understanding role of additional components [e.g. warm absorber, Silva +'16, large scale scatterer, Turner & Miller '16; Miller's talk]

Studying lag phenomenology [e.g. flux-dependence? Kara+13]

Can we use reverberation to constrain the (evolving) accretion flow geometry in BHXRBs?

Changes of inner flow geometry during outburst evolution

Results from FeK fit are controversial

First detection of reverberation in a BHXRB

Reverberation across mass scale

New detections of reverberation lags in BHXRBs

[*De Marco+'15,'16*]

Sample: 10 sources (about 60 observations)

New detections (2 for GX 339-4, 4 for H1743-322)

Offset between BHXRBs and the AGN sample

New detections of reverberation lags in BHXRBs

Sample: 10 sources (about 60 observations)

New detections (2 for GX 339-4, 4 for H1743-322)

Offset between BHXRBs and the AGN sample \rightarrow *different disc-corona geometry?*

Wrap-up

The reverberation lag decreases with luminosity in the hard state, consistent with an evolving inner disc radius

Future

Detailed modelling of lag spectra with self-consistent models to derive disc inner radius Disentangle contribution of lags associated with QPOs [Stevens +'16; Ingram+'16a; '16b; van den Eijnden+'16; see also Ingram's talk] More data! To study more sources and to sample more accretion states

Thanks!