Modeling polarization from relativistic outflows

Tania Garrigoux NWU, Potchefstroom

with M. Boettcher and Z. Wadiasingh

Tania Garrigoux

BH Kathmandu 2016

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT

<u>Blazars</u>

Class of AGN consisting of BL Lac objects and gammaray bright quasars Rapidly (often intra-day) variable

- Strong gamma-ray sources
- Radio jets, often with superluminal motion
- Radio and optical polarization

Quasar 3C175 YLA 6cm image (c) NRAO 1996

Open Physics Questions

- Source of Jet Power (Blandford-Znajek / Blandford/Payne?)
- Physics of jet launching / collimation / acceleration – role / topology of magnetic fields
- Mode of particle acceleration (shocks / shear layers / magnetic reconnection?) – role of B fields
- Location of the energy dissipation / gamma-ray emission region
- Composition of jets (e--p or e+-e- plasma?) leptonic or hadronic high-energy emission?

Leptonic Blazar Model

Hadronic Blazar Models

Leptonic and Hadronic Model Fits along the Blazar Sequence

3C454.3

Leptonic and Hadronic Model Fits Along the Blazar Sequence

<u>Lepto-Hadronic Model Fits</u> <u>Along the Blazar Sequence</u>

RGB J0710+591 (HBL)

Polarization Angle Swings

(mJy)

د بي

R-Band Flux Density

5000

- Optical + γ -ray variability of LSP blazars often correlated
- Sometimes O/γ flares correlated with increase in optical polarization and multiple rotations of the polarization angle (PA)

Distinguishing Diagnostic: Polarization

<u>Synchrotron Polarization</u>

For synchrotron radiation from a power-law distribution of electrons with ne (γ) ~ γ -p \rightarrow Fv ~ v- α with $\alpha = (p-1)/2$

$$\prod_{L}^{p} = \frac{p+1}{p+7/3} \frac{\alpha+1}{\alpha+5/3}$$

$$p = 2 \rightarrow \Pi = 69 \%$$

 $p = 3 \rightarrow \Pi = 75 \%$

<u>Compton Polarization</u>

Compton cross section is polarization-dependent:

$$\frac{d\sigma}{d\Omega} = \frac{r_0^2}{4} \left(\frac{\epsilon'}{\epsilon}\right)^2 \left(\frac{\epsilon}{\epsilon'} + \frac{\epsilon'}{\epsilon} - 2 + 4\left[\overrightarrow{e} \cdot \overrightarrow{e'}\right]^2\right)$$

Thomson regime: $\varepsilon \approx \varepsilon'$ $\Rightarrow d\sigma/d\Omega = 0$ if $\vec{e} \cdot \vec{e}' = 0$

⇒ Scattering preferentially in the plane perpendicular $t\bar{o}^{>}e!$

```
Preferred polarization direction is preserved
```


Tania Garrigoux

<u>X-Ray Polarization:</u> <u>IC - UV</u>

Modeling of AO 0235+164

Thermal + non thermal electron distribution results self-consistently from MC simulations of DSA

External Compton scattering of thermal distribution

⇒Importance of Bulk Compton process

Tania Garrigoux

Polarization in the IC- UV scenario

We define Stokes parameters normalized by I, the total energy density of the photon (*Chang et al*, 2013)

$$\xi_1^f = U/I$$
 $\xi_2^f = V/I$ $\xi_3^f = Q/I$

The degree of polarization Π is then defined by:

$$\Pi = \sqrt{(\xi_1^f)^2 + (\xi_2^f)^2 + (\xi_3^f)^2}$$
with $\xi_1^f = \frac{\xi_1^i \langle F_{11} \rangle}{\langle F_0 \rangle + \xi_3^i \langle F_3 \rangle}$ $\xi_2^f = \frac{\xi_2^i \langle F_{22} \rangle}{\langle F_0 \rangle + \xi_3^i \langle F_3 \rangle}$ $\xi_3^f = \frac{\langle F_3 \rangle + \xi_3^i \langle F_{33} \rangle}{\langle F_0 \rangle + \xi_3^i \langle F_3 \rangle}$

$$\langle F_a \rangle = \frac{1}{c} \int_{\gamma_1}^{\gamma_2} \frac{dn_e}{d\epsilon d\Omega}(\gamma) \, d\gamma \int \int \int \frac{dn_\gamma}{d\epsilon d\Omega}(\epsilon_i) \left(\frac{\epsilon_f}{\epsilon_i}\right)^2 F_a \, \delta(\epsilon_f - \epsilon_1) \, d\epsilon_i \, d\Omega_e \, d\Omega_\gamma$$

Tania Garrigoux

Polarization in the IC- UV scenario

<u>X-Ray Polarization:</u> <u>IC - UV</u>

Tania Garrigoux

<u>Summary</u>

- 1. Both leptonic and hadronic models can generally fit blazar SEDs well. Possible distinguishing diagnostics: Variability, polarization, neutrinos
- 2. A model is being developed to study x-ray polarization in the IC-UV scenario, including the Bulk Compton process.
- 3. <u>Next steps</u> would include integration over θi and study of the influence of different parameters (bulk factor, temperature of electron distribution)
- 4. Future polarimetry missions can play a determinant role in constraining the models of jet physics

Tania Garrigoux

BH Kathmandu 2016

NORTH-WEST UNIVERSITY6 YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT

YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT

Thank you!

Backup slides

<u>Blazars</u>

Class of AGN consisting of BL Lac objects and gammaray bright quasars Rapidly (often intra-day) variable

Quasar 3C175 YLA 6cm image (c) NRAO 1996

du 2016

Blazar Variability: <u>Example: The Quasar 3C279</u> 2005

Blazar Variability: Variability of PKS 2155-304

VHE γ-ray and X-ray variability often closely correlated Tania Garrigoux VHE γ -ray variability on time scales as short as a few minutes!

<u>Blazars</u>

Class of AGN consisting of BL Lac objects and gammaray bright quasars Rapidly (often intra-day) variable

Strong gamma-ray sources

Quasar 3C175 YLA 6cm image (c) NRAO 1996

thmandu 2016

Blazar Spectral Energy Distributions (SEDs)

Superluminal Motion

(The MOJAVE Collaboration)

Superluminal Motion

Apparent motion at up to ~ 40 times the speed of light! Tania

Spectral modeling results along the
Blazar Sequence: Leptonic ModelsBlazar Sequence: Leptonic ModelsLow magnetic fields
(~ 0.1 G);High electron
energies (up to TeV);

Large bulk Lorentz factors ($\Gamma > 10$)

No dense circumnuclear material → No strong external Taniaphoton field

<u>Spectral modeling results along the</u> <u>Blazar Sequence: Leptonic Models</u>

Constraints from Observations

If energy-dependent (spectral) time lags are related to energy-dependent synchrotron cooling time scale:

d γ /dt = -v0 γ 2 with v0 = (4/3) c σ T u'B (1 + k) and k = u'ph/u'B (Compton Dominance Parameter) tcool = γ /|d γ /dt| = 1/ (v0 γ) vsy = 3.4*106 (B/G) (δ /(1+z)) γ 2 Hz

=>
$$\Delta tcool \sim B-3/2 (\delta/(1+z))1/2 (1 + k)-1(v1-1/2 - v2-1/2)$$

=> Measure time lags between frequencies v1, v2 → estimate Magnetic field (modulo $\delta/[1+z]$)!

Tania Garrigoux

BH Kathmandu 2016

28

(Takahashi et al. 1996)

Distinguishing Diagnostic: Variability

 Time-dependent leptonic one-zone models produce correlated synchrotron + gamma-ray variability (Mastichiadis & Kirk 1997, Li & Kusunose 2000, Böttcher & Chiang 2002, Moderski et al. 2003, Diltz & Böttcher 2014)

SED 3C 273: Lightcurve Acceleration Time Scale

<u>Correlated Multiwavelength Variability</u> in Leptonic One-Zone Models

Example: Variability from short-term increase in 2ndorder-Fermi acceleration efficiency

X-rays anti-correlated with radio, optical, γ -rays;

delayed by ~ few hours. BH Kathmandu 2016 (Diltz & Böttcher, 2014, JHEAp)

30

Tania Garrigoux

Distinguishing Diagnostic: Variability

 Time-dependent hadronic models can produce uncorrelated variability / orphan flares

(Diltz et al. 2015)

Diagnosing the Location of the Blazar Zone

Calculation of X-Ray and Gamma-Ray Polarization in Leptonic and Hadronic Blazar Models

• Synchrotron polarization:

Standard Rybicki & Lightman description

- SSC Polarization: Bonometto & Saggion (1974) for Compton scattering in Thomson regime
- External-Compton emission: Unpolarized.

Upper limits on high-energy polarization, assuming perfectly ordered magnetic field perpendicular to the line of sight (Zhang & Böttcher 2013)