Multi-band time-lapse of the western jet of XTE J1550-564

Giulia Migliori Lab. AIM/Univ. Paris-7/CEA-Saclay S.Corbel, J. Tomsick, P. Kaaret, M. Coriat, R. Fender, T. Tzioumis, J. Orosz

Jet flavors in X-ray binaries

compact, persistent radio jets (~10 AU) transient, relativistic radio jets (~100s AU)

large scale jets (up to~10s pc) radio lobes/ cavities

The large scale jets of XTE J1550-564

Low mass XRB XTE J1550-564: Discovery of large scale (~0.5pc) decelerating jets following a major X-ray outburst in 1998 (Corbel+'02): <Vapp,eastjet>=1.0c to 0.1c; <Vapp,westjet>=0.55c to 0.4c.

The large scale jets of XTE J1550-564

Low mass XRB XTE J1550-564: Discovery of large scale (~0.5pc) decelerating jets following a major X-ray outburst in 1998 (Corbel+'02): <Vapp,eastjet>=1.0c to 0.1c; <Vapp,westjet>=0.55c to 0.4c.

Dynamical Model: the jets start to radiatively dissipate energy and decelerate when they reach the walls of the low-density Cavity (Wang 2003;Hao&Zhang '09, Steiner+'12).

The large scale jets of XTE J1550-564

A fast decaying X-ray emission

Radiative Model:

- particles accelerated by a reverse shock similar to GRB afterglows (Wang 2003; Hao & Zhang 2009);
- energy losses dominated by adiabatic expansion losses;

✓ X-ray follow-up: 8 Chandra observations;
★ Radio follow-up: 24 ATCA observations at 4 frequencies (1.4 GHz, 2.5 GHz, 4.8 GHz, 8.6 GHz).

In depth study of the western jet

Western Jet: X-ray morphology

Evolution in ~1.5 yrs of the X-ray jet morphology:

- extended;
- helical structure? also observed in jets of XRBs and AGNs.

Kathmandu, 19/10/16

Western Jet: X-ray surface brightness

Western Jet: radio & X-ray morphology

some differences in the radio morphology (8.6 GHz, 4.8 GHz) but flux sensitivity was not optimal to map low-brightness features.

rise (& peak?) plateau

decay

Chromatic decay of the emission: radio frequencies

Steep decay of the optically thin synch. emission

@8.6 GHz:flux re-brightening +spectral flattening

Chromatic decay of the emission: radio vs. X-rays

The flux decays slower in X-rays than in radio: not expected if adiabatic losses are dominant.

Radio-X-rays SED: synchrotron emission

- X-ray emission on the extrapolation of the radio spectrum (4/5 obs.);

- bremss. origin requires too large masses (>10²⁸ gr) for accretion and entrainment;

X-rays from synchrotron emission

Radio-X-rays SED: reflare

polarization

shock-compressed B field

Conclusions

- evolution of structure of the X-ray western jet:
 - trailing tail extending backwards: a signature of the reverse shock passing through the jet plasma?
- radio to X-ray synchrotron emission:
 - different decay times of the radio and X-ray fluxes: not consistent with dominant adiabatic losses => need ad-hoc modeling;
 - variation of the spectral shape during the radio re-brightening=> new acceleration episode?
- jet motion as seen in radio consistent with the dynamical models of jets in a cavity.

Western Jet: X-ray morphology

Reverse shock propagation through the jet plasma?

Backwards motion of the reverse shock is observed in SN remnants (in Tycho SNR, Yamaguchi et al. 2014) => non-relativistic shock

GRB afterglow models: forward & reverse shock emission

early afterglow: $-t^{-1.1}$ R_B~ R_e~1 but t_p>>t_x Type-I reverse shock emission forward shock emission reverse shock dominated R_{B} >>1 or/and R_{e} >>1 Type-II $-t^{-2}-t^{-3}$ Log (Flux) **~t**^{-1.1} reverse shock emission forward shock emission __**_**-1.1 Type-III forward shock dominated forward shock emission $R_{R} <<1$ (or $\sigma >>1$?), or $R_{e} <<1$, or $t_{n} \sim t_{x}$ reverse shock emission Log (t)

GRB afterglow models: reverse shock dominated X-ray emission

Steep decay + late flattening if:

Lorentz factor of the late ejecta <10;

 large part of the shock-dissipated energy goes into a small fraction of e⁻;

conditions on the ISM: inefficient energy transfert to the particles/B field in the plasma crossed by the forward shock