Multi-band time-lapse of the western jet of XTE J1550-564

Giulia Migliori

Lab. AIM/Univ. Paris-7/CEA-Saclay
S.Corbel, J. Tomsick, P. Kaaret, M. Coriat, R. Fender, T. Tzioumis, J. Orosz

Jet flavors in X-ray binaries

compact, persistent radio jets ($\sim 10 \mathrm{AU}$)
transient, relativistic radio jets ($\sim 100 \mathrm{~s} \mathrm{AU}$)
large scale jets (up to~10s pc)
radio lobes/ cavities

CygX-1

Mirabel \& Rodriguez+'92

The large scale jets of XTE J1550-564

receding

 western jetLow mass XRB XTE J1550-564: Discovery of large scale (~0.5pc) decelerating jets following a major X-ray outburst in 1998 (Corbel+'02):
$<V_{\text {app, eastjet }}=1.0 \mathrm{c}$ to 0.1 c ; $<V_{\text {app, westiet }}=0.55 \mathrm{c}$ to 0.4 c .

The large scale jets of XTE J1550-564

X-ray/Chandra

The large scale jets of XTE J1550-564

A fast decaying X-ray emission

Radiative Model:

- particles accelerated by a reverse shock similar to GRB afterglows (Wang 2003; Hao \& Zhang 2009);
- energy losses dominated by adiabatic expansion losses;

\checkmark X-ray follow-up: 8 Chandra observations;
* Radio follow-up: 24 ATCA observations at 4 frequencies ($1.4 \mathrm{GHz}, 2.5 \mathrm{GHz}$, $4.8 \mathrm{GHz}, 8.6 \mathrm{GHz}$).

In depth study of the western jet

Western Jet: X-ray morphology

Evolution in ~ 1.5 yrs of the X-ray jet morphology:

- extended;
- helical structure? also observed in jets of XRBs and AGNs.

Western Jet: X-ray surface brightness

- extended X-ray profile
- progressive deceleration of the main peak;
- formation of a receding tail;
reverse shock propagation through the jet plasma?

> or
colliding shells?

Western Jet: radio \& X-ray morphology

ObsID 3448: 03/11/2002
Obs 8+9: 04/08-09/2002

ObsID 4368: 01/28/2003
Obs 21+22: 01/26-27/2003

ObsID 3672: 06/19/2002
Obs 11: 05/22/2002

ObsID 5190: 10/23/2003
ObsID 5190: 10/23/2003
Obs 24:07/25/2003

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.077 | 0.11 | 0.18 | 0.31 | 0.58 | 1.1 | 2.2 | 4.3 | 8.6 |

some differences in the radio morphology (8.6 GHz, 4.8 GHz) but flux sensitivity was not optimal to map low-brightness features.

Chromatic decay of the emission: radio frequencies

Steep decay of the optically thin synch. emission

@8.6 GHz:

flux re-brightening + spectral flattening

Chromatic decay of the emission: radio vs. X-rays

The flux decays slower in X-rays than in radio: not expected if adiabatic losses are dominant.

Radio-X-rays SED: synchrotron emission

- X-ray emission on the extrapolation of the radio spectrum ($4 / 5 \mathrm{obs}$.);
- bremss. origin requires too large masses (>1028 gr) for accretion and entrainment;

X-rays from synchrotron emission

Radio-X-rays SED: reflare

Linear polarization

- 10\%-15\% linear polarization @4.8 GHz and 8.6 GHz;
- E vector parallel to the jet axis
reverse shock model => polarized emission probes the jet's B field:

shock-compressed B field

Jets' dynamics

Conclusions

- evolution of structure of the X-ray western jet:
- trailing tail extending backwards: a signature of the reverse shock passing through the jet plasma?
- radio to X-ray synchrotron emission:
- different decay times of the radio and X-ray fluxes: not consistent with dominant adiabatic losses => need ad-hoc modeling;
- variation of the spectral shape during the radio re-brightening=> new acceleration episode?
- jet motion as seen in radio consistent with the dynamical models of jets in a cavity.

Western Jet: X-ray morphology

Helical pattern in 3C273 radio jet: KH instabilities from the jet-ISM interaction $+$
initial perturbation

Reverse shock propagation through the jet plasma?
Backwards motion of the reverse shock is observed in SN remnants (in Tycho SNR, Yamaguchi et al. 2014) => non-relativistic shock

GRB afterglow models: forward \& reverse shock emission

early afterglow:

reverse shock dominated
forward shock dominated

GRB afterglow models: reverse shock dominated X-ray emission

Steep decay + late flattening if:

- Lorentz factor of the late ejecta <10;
- large part of the shock-dissipated energy goes into a small fraction of e^{-};
conditions on the ISM: inefficient energy transfert to the particles/B field in the plasma crossed by the forward shock

