Accreting Black Holes as PeVatrons

Yuto Teraki Kyoto university (Japan)

collaborators: Kunito Ioka, Tatsuya Matsumoto

ref. YT, Matsumoto & loka (in prep.)

Observed cosmic-ray spectrum

Discovery : AD1912 by Victor Hess

$$\frac{dN}{dE} \propto E^{-\alpha}, \ (\alpha \sim 3)$$

Hadron (p, He....)

 $E_{\rm min} \lesssim 10^9 {\rm eV}$

 $PeV = 10^{15} eV$

 $E_{\rm max} \gtrsim 10^{20} {\rm eV}$

Observed cosmic-ray spectrum

Discovery : AD1912 by Victor Hess

$$\frac{dN}{dE} \propto E^{-\alpha}, \ (\alpha \sim 3)$$

Hadron (p, He....)

 $E_{\rm min} \lesssim 10^9 {\rm eV}$

 $PeV = 10^{15} eV$

 $E_{\rm max} \gtrsim 10^{20} {\rm eV}$

Observed cosmic-ray spectrum

Discovery : AD1912 by Victor Hess

$$\frac{dN}{dE} \propto E^{-\alpha}, \ (\alpha \sim 3)$$

Hadron (p, He....)

 $E_{\rm min} \lesssim 10^9 {\rm eV}$

 $PeV = 10^{15} eV$

 $E_{\rm max} \gtrsim 10^{20} {\rm eV}$

We propose a new hypothesis that

"Galactic" BH accretion disks

supply the PeV cosmic-rays

1. collisional relaxation time \ll accretion time in ADAF

1. collisional relaxation time \ll accretion time in ADAF

non-thermal distribution is allowed

1. collisional relaxation time \ll accretion time in ADAF

non-thermal distribution is allowed

2. MHD turbulence

Galactic Black Holes

Victor de Schwanberg/Science Photo Library

$$N_{\rm IBH} = 10^8 - 10^9$$

Mark A. Garlick

$$N_{\rm XRB} = 10^3 - 10^4$$

Eisenhauer, F.; et al. (July 20, 2005)

Sgr A*

Expected cosmic ray luminosity

Yuto Teraki (Kyoto unv.)

Models

Models

Models

Related timescales

Related timescales

Maximum energy diagram for ADAF & K41 $P_B(k) \propto k^{-5/3}$

Yuto Teraki (Kyoto unv.)

Maximum energy diagram for MAD & IK $P_B(k) \propto k^{-3/2}$

Yuto Teraki (Kyoto unv.)

Summary

Galactic BH accretion disks can supply the PeV cosmic rays

Summary

Galactic BH accretion disks can supply the PeV cosmic rays

for more detail, see YT, Matsumoto & loka (in prep.)

Summary

Galactic BH accretion disks can supply the PeV cosmic rays

for more detail, see YT, Matsumoto & loka (in prep.)

Thank you!

back up

 $m \equiv M_{\rm BH}/M_{\odot}$ $\dot{m} \equiv \dot{M}/\dot{M}_{\rm Edd}$

PeV gamma-rays from XRBs

Timescales

$$t_{\rm acc,iso} = p^2 / D_{\rm pp} = \left(\frac{R}{c}\right) \left(\frac{v_{\rm ph}}{c}\right)^{-2} \xi \left(\frac{R_{\rm Ln}}{R}\right)^{2-q} \gamma^{2-q} [s]$$
$$t_{\rm esc} = \frac{9R}{c} \xi^{-1} \left(\frac{R_{\rm Ln}}{R}\right)^{q-2} \gamma^{q-2} [s]$$

Parameters

Back ground photon spectrum

Mahadevan 1997

IC range
$$L_{\nu} \propto \nu^{-\kappa}$$

 $\kappa \equiv \frac{-\ln \tau_{\rm es}}{\ln A}$

$$A = 1 + 4\theta_e + 16\theta_e^2$$
$$\theta_e = kT_e/m_ec^2$$

 au_{es} : optical depth to electron scattering

Injection to acceleration cycle

Main process: magnetic reconnection

Wind feedback

Accreting matter can be blown away !

$$\epsilon_{\rm w} \dot{M}_{\rm BH} c^2 > \dot{M}_{\rm out} V^2$$

 $\epsilon_{\rm w}\gtrsim 10^{-3}\,$: energy conversion rate to wind

e.g. Yuan et al. 2015

