Fingerprints of intermediate-mass black holes in dense stellar systems

Michele Trenti

The University of Melbourne

Australian Government

Shining from the heart of darkness: BH accretion and Jets — Kathmandu, October 21 2016

Intermediate Mass Black Holes

- Link between stellar mass and supermassive BHs
 - MIMBH ~10² -10⁴ M_{Sun}

Two distinct BH populations or continuum?

Formation of IMBHs

- IMBHs predicted in various astrophysical contexts
- Special star formation
 - Metal-free stars at early times (Heger et al. 2004)
- Dense stellar environments
 - Run-away stellar collisions
 & collapse (Portegies-Zwart et al. 2004)
 - Efficient gas accretion on seed BHs (Vesperini et al. 2010)

How can we detect black holes?

• Dynamics

Accretion

 Gravitational waves (from binaries)

All methods point to search for IMBHs in star clusters

Dense star dusters (globular dusters)

- Live in/around galaxies (~160 in the MW)
- Compact & Old: ~10^{5.5} stars in ~10 pc³
 - No (or little) dark matter and gas
 - "Exotic" stellar objects in cores (e.g., BHs, binary pulsars, blue stragglers)

Are there central IMBHs as well?

IMBH fingerprints in Globular Clusters A challenging search

• Dynamics

Intermediate mass: Low orbital velocity and limited sphere of influence

Accretion

- Lack of gas: Very faint x-ray/radio (but tidal disruptions)
- Gravitational waves
 - Rarity of IMBH binaries?

Status of the field: IMBH observations A VERY challenging search

- Several claims of detections, but all debated
 - Case study: Omega Centauri
 - Controversial velocity dispersion measurements (Noyola et al. 2010; Anderson & van der Marel 2010)

• No accretion signature from 300ks Chandra: IMBH excluded (Haggard et al. 2013)... but modeling caveats

Status of the field: IMBH observations A VERY challenging search

- Several claims of detections, but all debated
 - Case study: Omega Centauri: M_{BH}~10⁴ M_{Sun}?
 - Controversial velocity dispersion measurements (Noyola et al. 2010; Anderson & van der Marel 2010)

• No accretion signature from 300ks Chandra: IMBH excluded (Haggard et al. 2013)... but modeling caveats

Modeling IMBH fingerprints

Dynamical simulations of GCs with central IMBH needed to assess (and find) fingerprints

Active research area (e.g., Baumgardt et al. 2004; Trenti et al. 2010; Lützgendorf et al. 2013; Umbreit et al. 2013; MacLeod et al. 2016; ...)

• Our approach

- Direct N-body: Exact dynamics but N~256k
- 150 M_{Sun} IMBH added to ~50% of simulations
 - Characterize dynamical evolution
 - "Observe" simulations and assess IMBH recovery

Global evolution of a GC with an IMBH IMBH quickly gets strongly bound companion and forms central density cusp

Modeling Inference: Dynamics

- Central velocity dispersion cusp best direct IMBH diagnostic
 - But noisy, especially from ground (DeVita et al., submitted)
- IMBH displaced from center (~5% r_c)
- Indirect fingerprints:
 - Large r_c/r_h (Baumgardt et al. 2005)
 - Mass segregation/ equipartition quenching (Gill et al. 2008; Trenti & van der Marel 2013)

Problem: Are fingerprints unique?

Simulated velocity dispersion with IMBH 1e4 M_{Sun}

Modeling Inference: Gas accretion

• Gas in GCs originates from stellar winds

- Closest BH companion rarely dominant over ambient gas
- Accretion rates are REALLY low
- Challenging for radio/x-ray detection

Modeling Inference: Stellar Accretion

Partnership with IMBH becomes tighter over time... before breaking up

Modeling Inference: Stellar Accretion Break-ups can be detection opportunities!

Michele Trenti

Tidal disruptions

• Flare is extremely luminous: $\sim 10^{41} (M_{BH}/10^3 M_{Sun}) \text{ erg s}^{-1}$

- Rare: ~10⁻⁸ yr⁻¹ in our simulations, but scales with $M_{BH}^{4/3}n_c$
- ~I0⁵⁻⁶ galaxies for I flare/yr (w/unity occupation fraction)
- Challenging today but promising for LSST (all-sky optical)

MacLeod et al. (2016)

Repeated tidal disruption flares

HLX-1: A candidate 10⁴ M_{Sun} IMBH with periodic flaring

- Secular evolution for most bound orbits in our simulations
- "Grazing orbits" possible and qualitatively explain HLX-I
 - Caveat: Simulated IMBH only 150 M_{Sun}

MacLeod et al. (2016)

Gravitational Waves

- Event rate: ~I Gyr⁻¹/cluster ~ I yr⁻¹ Gpc⁻³ [with 10⁹ GCs / Gpc³] (MacLeod et al. 2016)
 - LIGO can detect IMRI for IMBHs out to z~0.3

Interesting opportunity to explore!

Summary: IMBHs (10²-10⁴ M_{Sun})

Still missing link of stellar to supermassive BHs

- Dense stellar environments good places to look
- Elusive so far... but
 - Interesting physics to explore through modelling
 - Prospects for detections/stringent limits from
 - Stellar dynamics
 - Tidal disruption flares
 - Gravitational waves