Wind and Jet from Black Hole Accretion

Feng Yuan

Shanghai Astronomical Observatory Chinese Academy of Sciences

> Shining from the heart of darkness: BH accretion and Jets, 6th Kathmandu meeting, Kathmandu, Oct. 16-21, 2016

Accretion Regimes

Yuan & Narayan 2014, ARA&A

Super-Eddington accretion (slim disk) (Abramowicz et al. 1989; Sadowski et al. 2014; Jiang et al. 2014) TDEs, ULXs, SS433

Standard thin accretion disk (Shakura-Sunyaev, 1976) Typical QSOs, Seyferts; XRBs in thermal soft state

Hot Accretion: ADAF & RIAF (Narayan & Yi 94; Yuan 2001; Yuan & Narayan 2014, ARA&A) LLAGN, BL Lac objects, Sgr A*, M87 XRBs in hard & quiescent states

Wind exists in all regimes

Super-Eddington accretion

- Strong wind found in simulations (Ohsuga et al.; Sadowski et al. 2014; Jiang et al. 2014; Yang, Yuan et al. 2013)
- Mechanisms: radiation + ?
- Standard thin disk
 - Many observations (by absorption lines)
 - Radiation line-force (Proga et al., many works; Liu, Yuan et al. 2013)
 - MHD mechanism? (next talk by Defu Bu)
- Hot accretion flow: this talk

OUTLINE

Wind exists or not in hot accretion flow?
Properties of wind
Driving mechanism of wind
Disk-jet (vs. Blandford-Znajek jet)
Wind model for the formation of Fermi bubbles

Outflow (wind): why interesting?

Accretion physics

- Outflow: exists or not? important ingredient of accretion physics
- Crucial to explain many observations of AGNs & BH binaries

AGNs feedback

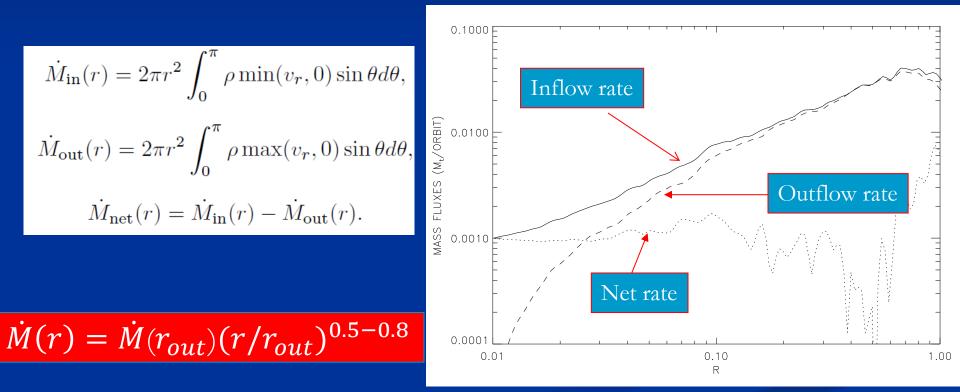
Outflow plays an important role in AGN feedback
Need to constrain their properties: mass flux, velocity, density...

Observations of wind

AGNs

- Frequently detected in luminous AGNs: BAL quasar
- But also in LLAGN; e.g. NGC 4395: $L_{bol} = 10^{-3}L_{Edd}$ (Crenshaw & Kraemer 2012)
- Wind and jet coexist in radio loud galaxies (Tombesi et al. 2014)

Black hole X-ray binaries


- Previously: wind exits in soft state
- Recently: also in hard state (Homan, Neilsen et al. 2016)

Brief history of study of wind

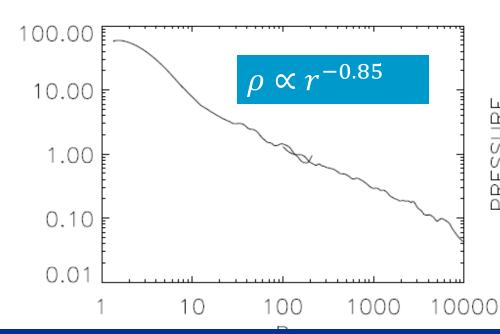
- Narayan & Yi (1994) speculate there should be outflow
- Blandford & Begelman (1999): construct ADIOS
- HD & MHD simulations (Yuan, Bu & Wu 2012; Narayan et al. 2012; Li, Ostriker & Sunayev 2013):
 - Self-consistently simulate both disk and outflow
 - show the existence of MHD outflow
- Analytical works:
 - 1D: Begelman (2012); Gu (2015)
 - 2D: Jiao & Wu (2011); Mosallanezhad, Bu & Yuan (2016)

Accretion rate decreases inward

Stone, Pringle & Begelman 1999; Stone & Pringle 2001; Hawley & Balbus 2002; Machida et al 2003; Pen et al. 2003; Igumenshchev, Narayan & Abramowicz 2003; Pang et al. 2010; Yuan & Bu 2010; Yuan, Wu & Bu 2012; Narayan et al. 2012; Li, Ostriker & Sunyaev 2013

Stone, Pringle & Begelman 1999

Density profile flattens


If Mdot is constant, then:

 $\rho \propto r^{-3/2}$

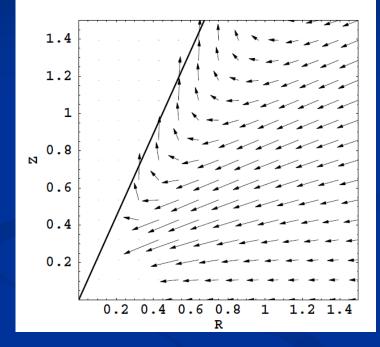
When Mdot decreases inward \rightarrow

DENSITY

Confirmed by Observations of Sgr A*

Aitken et al. 2001; Bower et al. 2003, 2005; Yuan, Quataert & Narayan 2003

Chandra observations + Bondi theory give the Bondi rate: $10^{-5} M_{\bullet} yr^{-1}$


(consistent with numerical simulation of Cuadra et al. 2006)

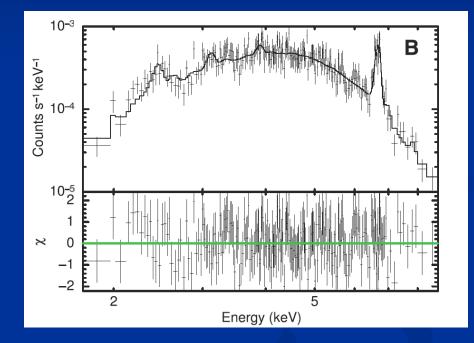
High linear polarization at radio waveband requires innermost region accretion rate (rotation measure requirement):

 $(10^{-7} - 10^{-9})M_{\bullet}yr^{-1}$ So Mdot must decrease inward!

Two Models proposed to explain the simulation

- Adiabatic Inflow-Outflow Solution (Blandford & Begelman 1999; 2004)
 - Assumption: Mass loss in outflow → Mdot decreases
- Convection-Dominated Accretion
 Flow (Narayan et al. 2000; Quataert & Gruzinov 2000)
 - basis: accretion flow is convectively unstable
 - Gas is locked in convective eddies →
 Mdot decreases
 - MHD flow is convectively unstable?

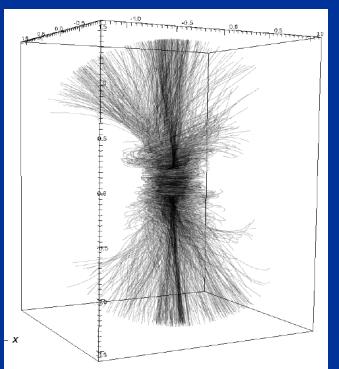
Blandford & Begelman 1999

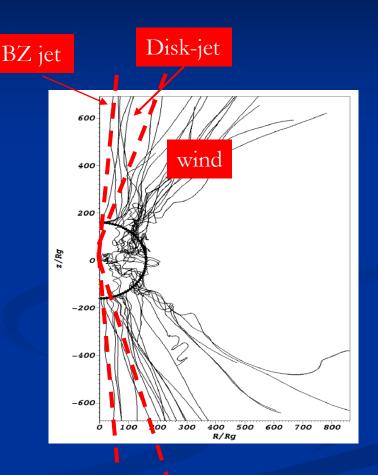

ADIOS or CDAF? Yuan et al. (2012, 2015)

- Performed HD & MHD simulations
- Theoretical analysis:
 - If convective turbulence, inflow & outflow properties should roughly same; → but different!
 - Analyze the convective stability of *MHD* accretion flow
 stable!
 - Study the trajectory of virtual particles in the acc. flow
- Conclusion: strong outflow exists!

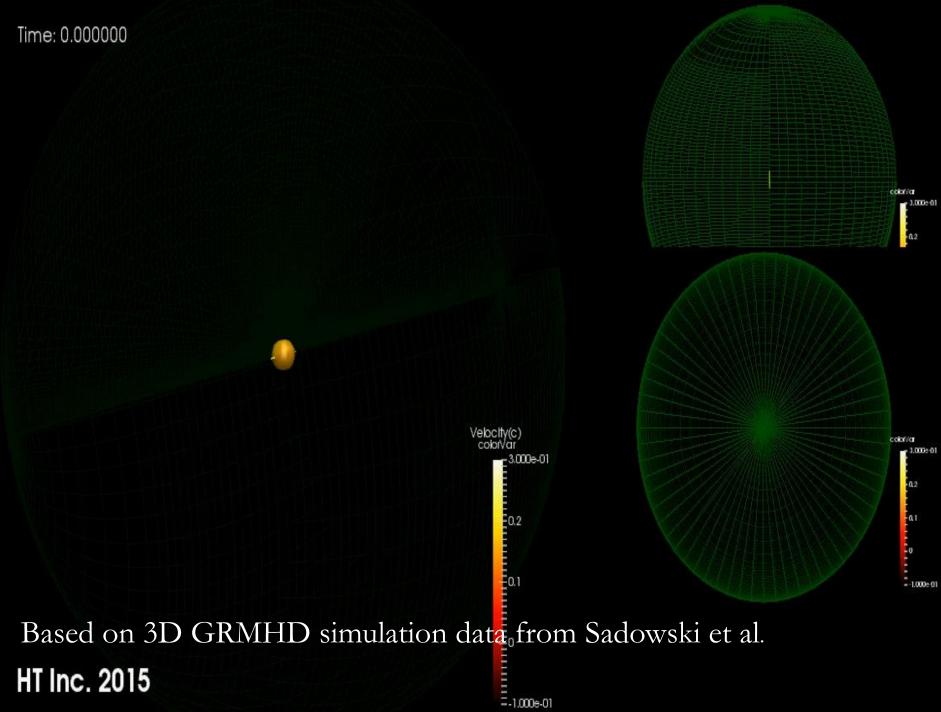
Outflow confirmed by new observations

Wang et al. 2013, Science

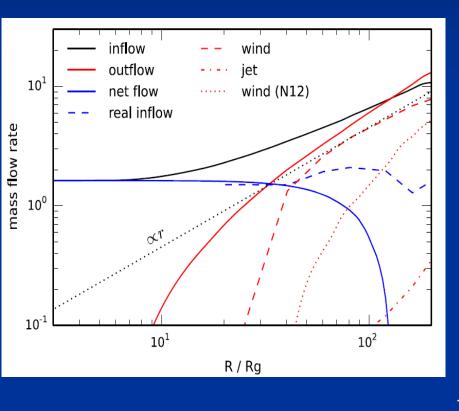

- 3Ms observation to the quiescent state of Sgr A* by Chandra
- H-like Fe Kα line profile fitting
 - → flat density profile
 → outflow



"Virtual particle trajectory"


Yuan et al. 2015, 2016

Trajectory approach
Firstly used in BH accretion
What & why?
Based on 3D GRMHD data

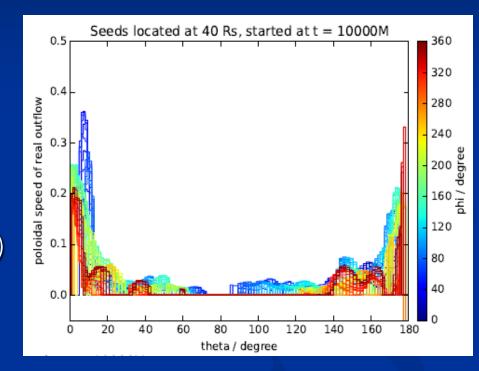


3D

Properties of wind: mass flux

Yuan et al. 2015, 2016

"Normal" magnetic field: $\dot{M}_{wind} = \dot{M}_{BH}(r) \left(\frac{r}{20r_s}\right), \quad a = 0$ $\dot{M}_{wind} = \dot{M}_{BH}(r) \left(\frac{r}{10r_s}\right), \quad a = 0.9$


"Strong" magnetic field (MAD):

$$\dot{M}_{wind} = \dot{M}_{BH}(r) \left(\frac{r}{5r_s}\right)$$
, $a = 0.9$

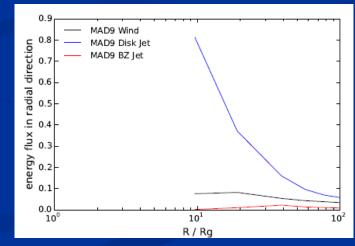
Properties of wind: poloidal speed

Yuan et al. 2015; 2016

Angular distribution
Disk-jet: (0.3-0.4)c
Poloidal speed: v_p(r)~(0.2 - 0.7)v_k(r)
(a has little effect but B does!)
Conserve or even slightly increase along trajectories

Properties of outflow: energy flux

Yuan et al. 2015; 2016

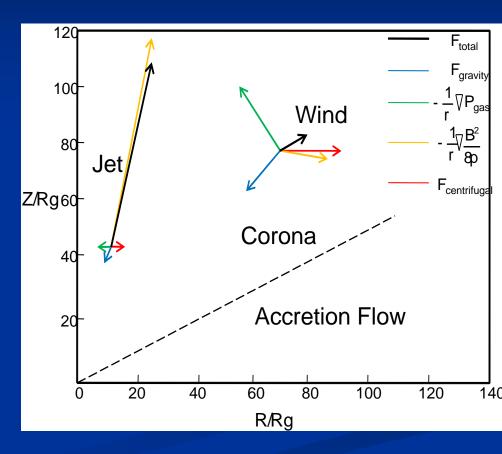

- Contribution from: plasma & Poynting flux
- Energy flux (temporary results)
 For MAD & a=0.9:
 - wind < jet (for both plasma & Poynting flux)
 - Disk-jet vs. BZ jet ?
 - For all other cases (SANE & any *a*):
 - wind > jet

 $\dot{E}_{wind} = \frac{1}{1000} \dot{M}_{BH} c^2$

■ Disk-jet > BZ jet

Energy flux of wind vs. accretion:

10¹ wind SANE0 wind SANE9 wind MAD9 jet SANE0 - jet SANE9 - jet MAD9 10¹ 10² 10² 10⁴ 10⁴ 10² R/Rg



 \rightarrow consistent with AGN feedback simulations

Mechanism of wind production

Yuan et al. 2015

- Driving forces:
 - Centrifugal force
 - Gradient of gas & magnetic pressure
- Comparison with Blandford & Payne (1982)
 - BP82: large-scale field + only centrifugal
 - We don't have large-scale poloidal field, we have both centrifugal & magnetic force (since $\hat{v} \neq \hat{B}$!)

Wind vs. jet: summary

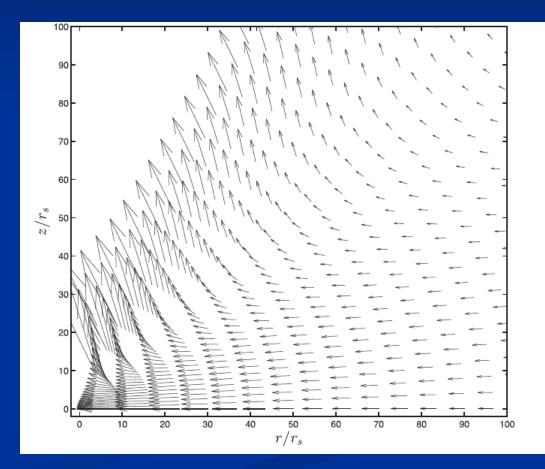
- Mass flux: wind >> jet
- Velocity: wind < jet</p>
- Energy flux: wind < jet only for MAD & a=0.9</p>
- Momentum flux: jet at most comparable to wind (?)

Given that the opening angle of wind is much larger than jet, Wind may be more important than jet in AGN feedback

Disk-jet (versus BZ jet)

Yuan & Narayan 2014; Yuan et al. 2015, 2016

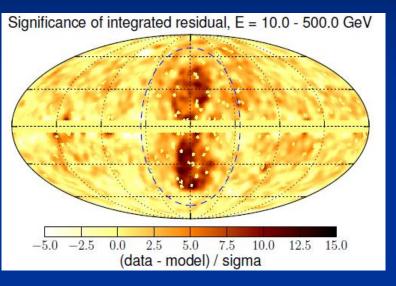
- Matter dominated
- Powered by the rotation of disk → so present even a=0
 Power of disk-jet vs. BZ jet?
 - (Livio, Ogilvie & Pringle 1999)
- not powered by Blandford-Payne, but by the magnetic tower mechanism proposed by Lynden-Bell (gradient of the pressure of toroidal magnetic field)


Question:

Disk jet & BZ jet, which one is associated with the observed jet?

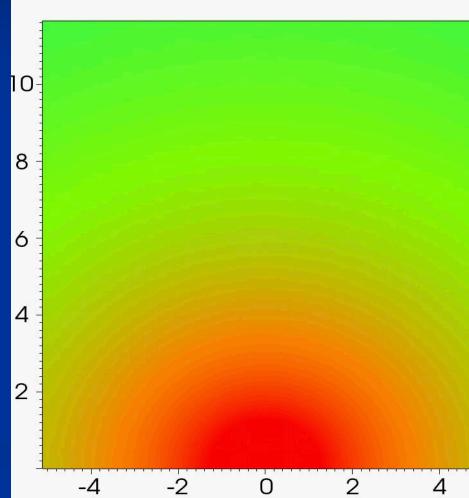
2D MHD analytical solution with winds

Mosallanezhad, Bu & Yuan 2016


- Including B field
- Reproducing the main simulation results
 - Strong wind found
 - Wind can transport /
 - Wind velocity
 - But: direction

Does the same mechanism produce wind from a thin disk? → Next talk by Defu Bu

Application: "accretion wind" model for Fermi bubbles


Mou, Yuan et al. 2014; 2015

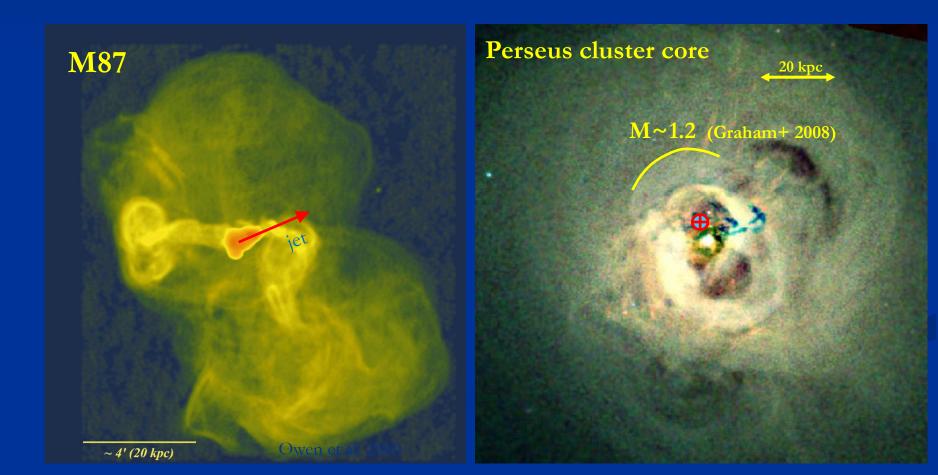
Su et al. 2010; Ackermann et al. 2014

Our wind model:

- Scenario: int. between wind & ISM
- Parameters not free
- Simul.: 3DMHD + Two-fluid

Results: γ **-ray radiation and others**

 Total γ-rays:
 Other features:
 Surface brightness
 Temperature of shocked ISM (observed: 0.3 kev):



Models	Jet	Radiation- driven wind	SF-driven Wind	Hot Accretion Wind
Temperature (NPS)	> 5 keV	$\sim 1 \text{ keV}$	Ν	0.4-1 keV
Age	1-2 Myr	6 Myr	$10^2 - 10^3 { m Myr}$	7-12 Myr

Velocity of bubble edge --- consistent with observations

Implication: roles of wind in other aspects

Formation of X-ray cavities and bubbles: by wind?
Solving the cooling flow problem with wind ?(Mou & Yuan 2016)

Summary

- Strong wind exists in hot accretion flows
- Properties of wind obtained with trajectory method
- Perhaps in most cases, energy & momentum flux of wind > jet, so wind may more important for AGN feedback than jet
- Disk-jet identified, powered by magnetic tower mechanism \rightarrow associated with the observed jet?

