On the evolutionary status of the donors in the low mass Xray binary systems containing black holes or neutron stars

. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw, Poland

- WE CONSIDER four LMXBs: IGR J17451-3022 P_{orb} = 0.2618 d probably contains a NS
- X2127+119/AC 211 in M15
- P_{orb} = 0.7125 d probably contains a NS, van Zyl et al. (2004) suggest q ≥ 10
- GS 2023+338/V404 Cyg
- $P_{orb} = 6.471 d$ contains a BH $M_{BH} = 9.0 M_{SUN}$
- **Sp** = **KO-K3 III M**_{opt} = **0.54±0.05** (from rot. broadening of <u>abs.lines</u>)
- GRS 1915+105/V1387 Aql
- $\frac{P_{orb}}{Sp} = 33.85 \text{ d contains a BH} \qquad M_{BH} = 12.4 \text{ M}_{SUN}$

OPTICAL COMPONENTS OF LMXBS

Radius is one of the most accurately determined parameters of the optical component

For the star filling its Roche lobe:

 $R_{opt}/R_{SUN} = 1.944 (P/1d)^{2/3} (M_{opt}/M_{SUN})^{1/3}$

orbital period is known with high precision and the dependence on Moopt is weak

optical component is typically a more or less "stripped" giant

Both "stripped" and "unstripped" giants satisfy well defined core mass -radius relation

Both "stripped" and "unstripped" giants satisfy well defined core mass -radius relation

log L/L_{sun}

By far, the best fit to L and R is obtained for model E. Unfortunately this model is unphysical as it does not permit the mass transfer

GRS 1915+105/V1387 Aql

- Our analysis indicates that the most likely solution is a highly stripped giant of mass ~ 0.28 M_{SUN} . However, a moderately stripped giant of mass ~ 0.5 M_{SUN} cannot be ruled out.
- Model D (0.28 M_{SUN}) located in a binary with P_{orb} = 33.85 d with a 12.4 M_{SUN} BH as a companion would transfer mass at the rate 8.5 x 10⁻¹⁰ M_{SUN} /yr which translates into duty cycle ~ 0.6 %.
- For model A (0.5 M_{SUN}) the numbers are 5.2 x 10⁻⁹ M_{SUN} /yr and ~ 3.6 %.

log R/R_{sun}

GS 2033+338/V404 Cyg

Our analysis supports the value of the mass estimated from the rotational broadening of the absorption lines of V404 Cyg (~ $0.54 M_{SUN}$).

Our model (0.54 M_{SUN}) located in a binary with $P_{orb} = 6.47 \text{ d}$ with a 9.0 M_{SUN} BH as a companion would transfer mass at the rate 1.2 x 10⁻⁹ M_{SUN} /yr.

X2127+119/AC 211

Our analysis together with the suggestion of van Zyl et al. (2004) that the mass of the optical component must be very low ($\leq 0.15 M_{SUN}$) indicate the mass ~ 0.16-0.17 M_{SUN} .

log R/R_{sun}

IGR J17451-3022

Analysis carried out by Zdziarski et al. (2016) using evolutionary tracks similar to those shown in Fig. 6 led to the conclusion that the mass of the optical component is most likely in the range 0.15-0.2 M_{SUN} . However, the alternative solution with the MS star of the mass ~ 0.5-0.8 M_{SUN} is also possible.