On the evolutionary status of the donors in the low mass X ray binary systems containing black holes or neutron stariss.

WE CONSIDER four LMXBs:

IGR J17451-3022
$\mathrm{P}_{\text {orb }}=\mathbf{0 . 2 6 1 8 \mathrm { d }}$ probably contains a NS
X2127+119/AC 211 in M15
$P_{\text {orb }}=\mathbf{0 . 7 1 2 5} \mathbf{d}$ probably contains a NS, van Zyl et al. (2004) suggest $q \geq 10$ GS 2023+338/V404 Cyg
$P_{\text {orb }}=6.471 \mathrm{~d}$ contains a BH $\quad \mathrm{M}_{\mathrm{BH}}=9.0 \mathrm{M}_{\text {suN }}$
$\mathrm{Sp}=\mathrm{KO}-\mathrm{K} 3 \mathrm{III} \quad \mathrm{M}_{\text {opt }}=\mathbf{0 . 5 4} \pm 0.05$ (from rot. broadening of abs.lines)
GRS 1915+105/V1387 AqI
$P_{\text {orb }}=33.85 \mathrm{~d}$ contains a $\mathrm{BH} \quad \mathrm{M}_{\mathrm{BH}}=12.4 \mathrm{M}_{\text {SUN }}$
Sp = K0-K3 III

OPTICAL COMPONENTS OF LMXBs

Radius is one of the most accurately determined parameters of the optical component
For the star filling its Roche lobe:
$R_{\text {opt }} / R_{\text {suN }}=1.944(P / 1 d)^{2 / 3}\left(M_{\text {opt }} / M_{\text {suN }}\right)^{1 / 3}$
orbital period is known with high precision and the dependence on $M_{\text {opt }}$ is weak optical component is typically a more or less "stripped" giant

Both "stripped" and "unstripped" giants satisfy well defined core mass -radius relation

Both "stripped" and "unstripped" giants satisfy well defined core mass -radius relation

By far, the best fit to L and R is obtained for model E. Unfortunately this model is unphysical as it does not permit the mass transfer

GRS 1915+105/V1387 AqI

Our analysis indicates that the most likely solution is a highly stripped giant of mass ~ $0.28 \mathrm{M}_{\text {SUN }}$. However, a moderately stripped giant of mass $\sim 0.5 \mathrm{M}_{\text {sun }}$ cannot be ruled out.

Model $\mathbf{D}\left(0.28 \mathrm{M}_{\text {suN }}\right)$ located in a binary with $\mathrm{P}_{\text {orb }}=33.85 \mathrm{~d}$ with a $12.4 \mathrm{M}_{\text {suN }} \mathrm{BH}$ as a companion would transfer mass at the rate $8.5 \times 10^{-10} \mathrm{M}_{\text {sun }} / \mathrm{yr}$ which translates into duty cycle ~ 0.6 \%.

For model $\mathbf{A}\left(0.5 \mathrm{M}_{\text {sun }}\right)$ the numbers are $5.2 \times 10^{-9} \mathrm{M}_{\text {sun }} / \mathrm{yr}$ and $\sim 3.6 \%$.

GS 2033+338/V404 Cyg

Our analysis supports the value of the mass estimated from the rotational broadening of the absorption lines of V404 Cyg (~ $\left.0.54 \mathrm{M}_{\text {suN }}\right)$.

Our model ($0.54 \mathrm{M}_{\text {suN }}$) located in a binary with $\mathrm{P}_{\text {orb }}=6.47 \mathrm{~d}$ with a $9.0 \mathrm{M}_{\text {sUN }} \mathrm{BH}$ as a companion would transfer mass at the rate $1.2 \times 10^{-9} \mathrm{M}_{\text {suN }} / \mathrm{yr}$.

X2127+119/AC 211

Our analysis together with the suggestion of van Zyl et al. (2004) that the mass of the optical component must be very low ($\leq 0.15 \mathrm{M}_{\text {SUN }}$) indicate the mass $\sim 0.16-0.17 \mathrm{M}_{\text {SUN }}$.

IGR J17451-3022

Analysis carried out by Zdziarski et al. (2016) using evolutionary tracks similar to those shown in Fig. 6 led to the conclusion that the mass of the optical component is most likely in the range 0.15-0.2 $\mathrm{M}_{\text {sun }}$. However, the alternative solution with the MS star of the mass $\sim 0.5-0.8 \mathrm{M}_{\text {sun }}$ is also possible.

