ATACAMA COSMOLOGY TELESCOPE

Elia Stefano Battistelli

Experimental Cosmology Group Physics department "Sapienza" University of Rome Experimental Cosmology Group Department of Physics & Astronomy University of British Columbia

for the ACT collaboration

Elia Stefano Battistelli – Planck Conference – 16th February 2012

🚳 🖉 🎂 🌠 🔔 🔘 🔃 🔘 NIST 🎆 🍈

ACT collaboration

Barcelona ICE (Spain) University of Pennsylvania (US) Princeton (US) PI: Lyman Page UBC (Canada) University of Pittsburgh (US) University of Cape Town (S. Africa) Cardiff University (UK) Pontifica Universidad Catolica (Chile) Rutgers (US) Columbia (US) Haverford (US) CITA/University of Toronto (Canada) **INAOE** (Mexico) and collaborators at: University of Kwa-Zulu Natal (S. Africa) Sapienza MPI University of Massachusetts (US) Stanford Berkeley Chicago NASA/GSFC (US) Miami LLNL NIST (US) CfA IPMU/Tokyo Oxford (UK)

Elia Stefano Battistelli – Planck Conference – 16th February 2012

NIST CARDIFF UNIVERSITY PRIFYSGOL

🔊 🖉 🎂 🌠 🧏

RUTGERS

•ACT: instrument and observations

•Maps and power spectrum

Cosmological parameters

•Gravitational lensing in CMB maps

point sources

•SZ clusters and follow-up: the case of "El Gordo"

•ACT: instrument and observations

Maps and power spectrum

Cosmological parameters

Gravitational lensing in CMB maps

point sources

•SZ clusters and follow-up: the case of "El Gordo"

ACT : instrument

- Gregorian, off-axis telescope with 6m diameter primary mirror, and 2m secondary
- Surrounded by co-moving and fixed ground screens

Elia Stefano Battistelli – Planck Conference – 16th February 2012

Fowler et al. App Opt 2007

ACT : instrument

- Gregorian, off-axis telescope with 6m diameter primary mirror, and 2m secondary
- Surrounded by co-moving and fixed ground screens

Elia Stefano Battistelli – Planck Conference – 16th February 2012

Fowler et al. App Opt 2007

ACT : location

- Location: Cerro Toco, Atacama desert, northern Chile
- Altitude 5200m (one of the highest on earth)
- PWV ~ 0.5mm

ACT: observations

- First light on October 2007
- completed seasons 4 2007 (150GHz only), 2008, 2009, 2010. 2 TB per month
- Crosslinked observations in 2 regions opposed wrt SCP az-scanning at 1°.5/s
- Sky coverage: \bullet north and south allowed
- 1000 deg² surveyed:
 - 9° South stripe: • survey centered at decl. −53°.5
 - Equatorial Stripe: 5° • stripe centered on the celestial equator

ACT: observations

- First light on October 2007
- 4 seasons completed 2007 (150GHz only), 2008, 2009, 2010. 2 TB per month
- Crosslinked observations in 2 regions opposed wrt SCP az-scanning at 1°.5/s
- Sky coverage: north and south allowed
- 1000 deg² surveyed:
 - South stripe: 9° survey centered at decl. –53°.5
 - Equatorial Stripe: 5° stripe centered on the celestial equator

ACT : instrument

- 3 x 1024 elements TES detectors array at 300mK;
- MBAC: dry/closed criostat with ¹¹He refrigerator;
- Observational frequency: 148, 217, 278 GHz with 1.4', 1.0', 0.9' resolution in sky from Saturn;

Swetz et al. ApJS 2011

ACT : instrument

 Pop-up Transition Edge Sensor (TES) developed at NASA GSFC;

- Inductively coupled to NIST SQUIDs;
- More than 3000 pixels → NIST Time Domain Multiplexing;
- 3 SQUID stages
- UBC Read Out/control electronics
- Automatic SQUID tuning procedure: one full and one short autotuning per night

Battistelli et al. JLTP 2008 Battistelli et al. SPIE proc. 2008

•ACT: instrument and observations

•Maps and power spectrum

Cosmological parameters

Gravitational lensing in CMB maps

point sources

•SZ clusters and follow-up: the case of "El Gordo"

ACT: data

•Raw time streams for 6 detectors over 5': atmosphere in common

•We use an iterative maximumlikelihood map-making that solves simultaneously for celestial signal and local effects. Removes:

•atm common mode + gradients

detector correlations

scan-synchronous effects

•Calibration:

•148GHz: 2% with WMAP 7yr by matching power spectrum at 400<I<1000

•218GHz: Uranus at 7% (6% due to the unknown mm temperature)

Dunner et al. in prep.

Elia Stefano Battistelli – Planck Conference – 16th February 2012

Hajian et al. ApJ 201;

84 deg² compilation map with WMAP data for the largest features, and ACT data to provide high resolution over 84 deg²

Hajian et al. ApJ 2011

ACT: maps

ACT: power spectrum

Elia Stefano Battistelli – Planck Conference – 16th February 2012

•ACT: instrument and observations

Maps and power spectrum

Cosmological parameters

Gravitational lensing in CMB maps

point sources

•SZ clusters and follow-up: the case of "El Gordo"

ACT: power spectrum

- CMB in good agreements with ΛCDM
- Strong Silk
 dumping
- No lensing is disfavored
- point sources evident
 - SZ contribution

Dunkley et al. ApJ, 2011

ACT: power spectrum

- CMB in good agreements with ΛCDM
- Strong Silk
 dumping
 - No lensing is disfavored
- point sources evident
 - SZ contribution

Dunkley et al. ApJ, 2011

ACT: cosmological parameters

Dunkley et al. ApJ, 2011

•ACDM	•tSZ power spectrum: B ₃₀₀₀ =6.8±2.9μK ²
fits well:	•tSZ $\rightarrow \sigma_8$ =0.77±0.05 (model dependent)
$\chi^2 = \frac{29}{}$	•kSZ power spectrum: B ₃₀₀₀ < 8 µ K ² (95%CL)
Dof 46	•IR poisson 148GHz: B₃₀₀₀=7.8±0.7 µ K ²

Elia Stefano Battistelli – Planck Conference – 16th February 2012

•Prim. pert. sp. index: **n**_s=0.962±0.013 (3σ-away form scl. inv.)

•Running of n_s: dn_s/dlnk=-0.034±0.018

 Tesor-to-scalar ratio: r<0.19 (95%CL)

•# rel. species: N_{eff}=5.3±1.3 (68%CL)

•Prim. He abundance: Y_p=0.313±0.044

•Grav. lensing:

A_L=1.3±0.5

String pert. (Nambu):
 G_μ<1.6 10⁻⁷ (95%CL)

 χ^2

Dof

29

46

Clustered

Total IR

ACT: cosmological parameters

Dunkley et al. ApJ, 2011

 $C_{\ell}(\mathrm{nK}^2)$

 C_{ℓ} (Jy² sr⁻¹)

 $\mathcal{B}_{3000} \ (\mu K^2)^c$

 $\mathcal{B}_{3000} \,(\mu {\rm K}^2)$

•Prim. pert. sp. index: n _s =0.962±0.013
(3σ-away form scl. inv.)
•Running of n _s : dn _s /dlnk=-0.034±0.018
 Tesor-to-scalar ratio: r<0.19 (95%CL)
•# rel. species: N _{eff} =5.3±1.3 (68%CL)
•Prim. He abundance: Y _p =0.313±0.044
•Grav. lensing: A _L =1.3±0.5

String pert. (Nambu):
 G_μ<1.6 10⁻⁷ (95%CL)

Elia Stefano Battistelli – Planck Conference – 16th February 2012

 $63 \pm 3 \pm 6$

 $14.7 \pm 0.7 \pm 1.8$

 $54 \pm 12 \pm 5$

 144 ± 13

 $5.5 \pm 0.5 \pm 0.6$

 $0.85 \pm 0.08 \pm 0.09$

 $4.6 \pm 0.9 \pm 0.6$

 12.5 ± 1.2

•ACT: instrument and observations

Maps and power spectrum

Cosmological parameters

•Gravitational lensing in CMB maps

point sources

SZ clusters and follow-up: the case of "El Gordo"

•CMB photons deflected by large scale structures. Typical deflection = 2'.7

•Gravitational lensing smooths acoustic peaks

•Using four point correlation function, gravitational lensing parameter $A_L: A_L=0 \rightarrow no$ lensing; $A_L=1 \rightarrow$ standard lensing:

A_L=1.3±0.5 (68%CL) ♥ 2.8σ-away form no lensing universe

Das et al. ApJ 2011

•CMB photons deflected by large scale structures. Typical deflection = 2'.7

•Gravitational lensing smooths acoustic peaks

•Using four point correlation function, gravitational lensing parameter $A_L: A_L=0 \rightarrow no$ lensing; $A_L=1 \rightarrow$ standard lensing:

A_L=1.3±0.5 (68%CL) ♥ 2.8σ-away form no lensing universe

Das et al. ApJ 2011

- CMB power spectrum for two geometrically degenerate cosmological models:
 - Ω_Λ=0
 - Ω_Λ=0.73, Ω_m=0.27
- The 7yr WMAP power spectrum does not significantly favor either model.
- Looking at higher resolution the CMB lensing deflection power spectra are different:
 - If Ω_{Λ} =0, CMB photons spend more time at low z
 - Structures grow more if Ω_{Λ} =0
 - Projection effects
- The Ω_{Λ} =0 universe would produce a larger lensing power spectrum.

Sherwin et al. Ph.Rev.L, 2011

• First CMB-only evidence for Λ

- CMB power spectrum for two geometrically degenerate cosmological models:
 - Ω_Λ=0
 - Ω_Λ=0.73, Ω_m=0.27
- The 7yr WMAP power spectrum does not significantly favor either model.
- Looking at higher resolution the CMB lensing deflection power spectra are different:
 - If Ω_{Λ} =0, CMB photons spend more time at low z
 - Structures grow more if Ω_{Λ} =0
 - Projection effects
- The Ω_{Λ} =0 universe would produce a larger lensing power spectrum.

Sherwin et al. Ph.Rev.L, 2011

•ACT: instrument and observations

Maps and power spectrum

Cosmological parameters

Gravitational lensing in CMB maps

point sources

SZ clusters and follow-up: the case of "El Gordo"

- Match-filter for Synchrotron Dominated Radio Galaxies and Dusty Star Forming Galaxies
- In 455 deg² we found, at 148GHz, 157 sources in the 15 1500 mJy range. Nearly all synchrotron dominated. 98% present in low frequency catalogues. Cross identification performed with ATCA at 20GHz of a bright sample yields:

 $<\alpha_{20-148}>=-0.39\pm0.04$ (fairly steep)

• Fundamental importance for SZ detection

Marriage et al., ApJ 2011

2.5

2.0

1.5

1.0

0.5

0.0

dN/dS [Jy^{3/2}/sr])

log₁₀(S^{5/2} (

ACT: point sources

0

Marriage et al., ApJ 2011

-4

SPT 2mm

-3

Elia Stefano Battistelli – Planck Conference – 16th February 2012

log₁₀(S [Jy])

-2

ACT: point sources

Elia Stefano Battistelli – Planck Conference – 16th February 2012

•ACT: instrument and observations

Maps and power spectrum

Cosmological parameters

Gravitational lensing in CMB maps

point sources

•SZ clusters and follow-up: the case of "El Gordo"

- 455 deg² in 2008 data at 148GHz
- Matched filter with βmodel profile
- 23 clusters blindly detected
- all have confirmed optical counter part
- 10 are new
- J0102-4915 is among the biggest clusters ever seen

Marriage et al. ApJ, 2011

- 455 deg² in 2008 data at 148GHz
- Matched filter with βmodel profile
- 23 clusters blindly detected
- all have confirmed optical counter part
- 10 are new
- J0102-4915 is among the biggest clusters ever seen

					Table 1				
				ACT 2008 14	8 GHz SZ-selected Ga	laxy Clusters			
ACT ID	R.A. (J2	R.A. (J2000) Decl.		$\theta_{\rm c}$	δT_0^{a}	$\delta T_0^{\prime b}$	y'0	zc	Alternative ID
l	(hms)	(° ′ ″)		()	(μK)	(μK)	(×10 ⁻⁴)		
				A	ll Candidates S/N > 0	5			
ACT-CL J0658-5557	06:58:30	-55:57:04	11.5	1.25	-483 ± 42	-734 ± 64	2.98 ± 0.26	0.30	1E0657-56 (Bullet)
ACT-CL J0638-5358	06:38:46	-53:58:45	10.0	1.25	-278 ± 28	-423 ± 42	1.68 ± 0.17	0.22	AS0592
ACT-CL J0245-5302	02:45:33	-53:02:04	9.1	1.00	-198 ± 22	-336 ± 37	1.32 ± 0.15	0.30	AS0295
ACT-CL J0102-4915	01:02:53	-49:15:19	9.0	0.75	-520 ± 58	-1046 ± 116	4.13 ± 0.46	0.75	New
ACT-CL J0438-5419	04:38:19	-54:19:05	8.0	0.50	-214 ± 27	-596 ± 74	2.35 ± 0.29	0.54	New
ACT-CL J0645-5413	06:45:30	-54:13:39	7.1	0.75	-221 ± 31	-444 ± 63	1.75 ± 0.25	0.17	A3404
ACT-CL J0546-5345	05:46:37	-53:45:32	6.5	1.75	-178 ± 27	-240 ± 37	0.95 ± 0.15	1.07	SPT-CL 0547-5345
ACT-CL J0235-5121	02:35:52	-51:21:16	6.2	4.00	-320 ± 51	-363 ± 58	1.43 ± 0.23	0.43	New
ACT-CL J0330-5227	03:30:54	-52:28:04	6.1	1.25	-145 ± 24	-221 ± 36	0.85 ± 0.14	0.44	A3128 (NE)
				S/N <	: 6 and Optically Conf	irmed			
ACT-CL J0616-5227	06:16:36	-52:27:35	5.9	0.50	-155 ± 26	-431 ± 73	1.70 ± 0.29	0.71	New
ACT-CL J0559-5249	05:59:43	-52:49:13	5.1	2.25	-155 ± 31	-194 ± 38	0.77 ± 0.15	0.61	SPT-CL J0559-5249
ACT-CL J0215-5212	02:15:18	-52:12:30	4.9	0.25	-140 ± 29	-801 ± 164	3.16 ± 0.65	0.51	New
ACT-CL J0509-5341	05:09:21	-53:42:05	4.8	0.50	-115 ± 24	-319 ± 67	1.27 ± 0.27	0.46	SPT-CL 0509-5342
ACT-CL J0641-4949	06:41:35	-49:48:32	4.7	0.25	-283 ± 60	-1625 ± 375	6.41 ± 1.48	0.15	A3402
ACT-CL J0232-5257	02:32:45	-52:57:08	4.7	0.25	-124 ± 26	-710 ± 152	2.80 ± 0.60	0.59	New
ACT-CL J0516-5430	05:16:30	-54:30:30	4.6	1.75	-143 ± 31	-192 ± 43	0.77 ± 0.17	0.29	AS0520/SPT-CL 0517-5430
ACT-CL J0346-5438	03:46:51	-54:38:54	4.4	1.25	-131 ± 30	-198 ± 45	0.78 ± 0.18	0.55	New
ACT-CL J0217-5245	02:17:11	-52:45:20	4.1	1.25	-98 ± 24	-150 ± 37	0.59 ± 0.14	0.34	RXC J0217.2-5244
ACT-CL J0145-5301	01:44:59	-53:01:01	4.0	1.00	-99 ± 25	-167 ± 42	0.65 ± 0.16	0.12	A2941
ACT-CL J0237-4939	02:37:03	-49:39:27	3.9	1.00	-140 ± 36	-236 ± 61	0.93 ± 0.24	0.40	New
ACT-CL J0304-4921	03:04:15	-49:21:42	3.9	1.00	-169 ± 43	-285 ± 74	1.12 ± 0.29	0.47	New
ACT-CL J0707-5522	07:07:13	-55:22:48	3.3	1.75	-218 ± 67	-293 ± 90	1.16 ± 0.35	0.43	New
ACT-CL J0528-5259	05:28:03	-52:59:53	3.1	0.50	-88 ± 28	-244 ± 78	0.94 ± 0.30	0.77	SPT-CL 0528-5300

Marriage et al. ApJ, 2011

- 455 deg² in 2008 data at 148GHz
- Matched filter with βmodel profile
- 23 clusters blindly detected
- all have confirmed optical counter part
- 10 are new _____
 - J0102-4915 is among the biggest clusters ever seen

				ACT 2008 14	Table 1 8 GHz SZ-selected Ga	ılaxy Clusters			
ACT ID	R.A. (J2000) Decl.		S/N	$\theta_{\rm c}$	δT_0^{a}	$\delta T_0^{\prime b}$	y'0	z ^c	Alternative ID
	(hms)	(° ′ ″)		(')	(μK)	(µK)	(×10 ⁻⁴)		
				A	ll Candidates S/N >	6			
ACT-CL J0658-5557	06:58:30	-55:57:04	11.5	1.25	-483 ± 42	-734 ± 64	2.98 ± 0.26	0.30	1E0657-56 (Bullet)
ACT-CL J0638-5358	06:38:46	-53:58:45	10.0	1.25	-278 ± 28	-423 ± 42	1.68 ± 0.17	0.22	AS0592
ACT-CL 10245-5302	02:45:33	-53:02:04	9.1	1.00	-198 + 22	-336 ± 37	1.32 ± 0.15	0.30	AS0295
ACT-CL J0102-4915	01:02:53	-49:15:19	9.0	0.75	-520 ± 58	-1046 ± 116	4.13 ± 0.46	0.75	New
ACT-CL J0438-5419	04:38:19	-54:19:05	8.0	0.50	-214 ± 27	-596 ± 74	2.35 ± 0.29	0.54	New
ACT-CL J0645-5413	06:45:30	-54:13:39	7.1	0.75	-221 ± 31	-444 ± 63	1.75 ± 0.25	0.17	A3404
ACT-CL J0546-5345	05:46:37	-53:45:32	6.5	1.75	-178 ± 27	-240 ± 37	0.95 ± 0.15	1.07	SPT-CL 0547-5345
ACT-CL J0235-5121	02:35:52	-51:21:16	6.2	4.00	-320 ± 51	-363 ± 58	1.43 ± 0.23	0.43	New
ACT-CL J0330-5227	03:30:54	-52:28:04	6.1	1.25	-145 ± 24	-221 ± 36	0.85 ± 0.14	0.44	A3128 (NE)
				S/N <	: 6 and Optically Conf	irmed			
ACT-CL J0616-5227	06:16:36	-52:27:35	5.9	0.50	-155 ± 26	-431 ± 73	1.70 ± 0.29	0.71	New
ACT-CL J0559-5249	05:59:43	-52:49:13	5.1	2.25	-155 ± 31	-194 ± 38	0.77 ± 0.15	0.61	SPT-CL J0559-5249
ACT-CL J0215-5212	02:15:18	-52:12:30	4.9	0.25	-140 ± 29	-801 ± 164	3.16 ± 0.65	0.51	New
ACT-CL J0509-5341	05:09:21	-53:42:05	4.8	0.50	-115 ± 24	-319 ± 67	1.27 ± 0.27	0.46	SPT-CL 0509-5342
ACT-CL J0641-4949	06:41:35	-49:48:32	4.7	0.25	-283 ± 60	-1625 ± 375	6.41 ± 1.48	0.15	A3402
ACT-CL J0232-5257	02:32:45	-52:57:08	4.7	0.25	-124 ± 26	-710 ± 152	2.80 ± 0.60	0.59	New
ACT-CL J0516-5430	05:16:30	-54:30:30	4.6	1.75	-143 ± 31	-192 ± 43	0.77 ± 0.17	0.29	AS0520/SPT-CL 0517-5430
ACT-CL J0346-5438	03:46:51	-54:38:54	4.4	1.25	-131 ± 30	-198 ± 45	0.78 ± 0.18	0.55	New
ACT-CL J0217-5245	02:17:11	-52:45:20	4.1	1.25	-98 ± 24	-150 ± 37	0.59 ± 0.14	0.34	RXC J0217.2-5244
ACT-CL J0145-5301	01:44:59	-53:01:01	4.0	1.00	-99 ± 25	-167 ± 42	0.65 ± 0.16	0.12	A2941
ACT-CL J0237-4939	02:37:03	-49:39:27	3.9	1.00	-140 ± 36	-236 ± 61	0.93 ± 0.24	0.40	New
ACT-CL J0304-4921	03:04:15	-49:21:42	3.9	1.00	-169 ± 43	-285 ± 74	1.12 ± 0.29	0.47	New
ACT-CL J0707-5522	07:07:13	-55:22:48	3.3	1.75	-218 ± 67	-293 ± 90	1.16 ± 0.35	0.43	New
ACT-CL J0528-5259	05:28:03	-52:59:53	3.1	0.50	-88 ± 28	-244 ± 78	0.94 ± 0.30	0.77	SPT-CL 0528-5300

Marriage et al. ApJ, 2011

- 455 deg² in 2008 data at 148GHz
- Matched filter with βmodel profile
- 23 clusters blindly detected
- all have confirmed optical counter part
- 10 are new
- J0102-4915 is among the biggest clusters ever seen

					Table 1				
				ACT 2008 14	8 GHz SZ-selected Ga	laxy Clusters			
ACT ID	R.A. (J2000) Decl.		S/N	$\theta_{\rm c}$	δT_0^{a}	$\delta T_0^{\prime b}$	y ₀	z ^c	Alternative ID
	(hms)	(°′″)		()	(μK)	(μK)	(×10 ⁻⁴)		
				A	All Candidates $S/N > 6$	6			
ACT-CL J0658-5557	06:58:30	-55:57:04	11.5	1.25	-483 ± 42	-734 ± 64	2.98 ± 0.26	0.30	1E0657-56 (Bullet)
ACT-CL J0638-5358	06:38:46	-53:58:45	10.0	1.25	-278 ± 28	-423 ± 42	1.68 ± 0.17	0.22	AS0592
ACT-CL 10245-5302	02:45:33	-53:02:04	9.1	1.00	-198 ± 22	-336 ± 37	1.32 ± 0.15	0.30	AS0295
ACT-CL J0102-4915	01:02:53	-49:15:19	9.0	0.75	-520 ± 58	-1046 ± 116	4.13 ± 0.46	0.75	New
ACT-CL J0438-5419	04:38:19	-54:19:05	8.0	0.50	-214 ± 27	-596 ± 74	2.35 ± 0.29	0.54	New
ACT-CL J0645-5413	06:45:30	-54:13:39	7.1	0.75	-221 ± 31	-444 ± 63	1.75 ± 0.25	0.17	A3404
ACT-CL J0546-5345	05:46:37	-53:45:32	6.5	1.75	-178 ± 27	-240 ± 37	0.95 ± 0.15	1.07	SPT-CL 0547-5345
ACT-CL J0235-5121	02:35:52	-51:21:16	6.2	4.00	-320 ± 51	-363 ± 58	1.43 ± 0.23	0.43	New
ACT-CL J0330-5227	03:30:54	-52:28:04	6.1	1.25	-145 ± 24	-221 ± 36	0.85 ± 0.14	0.44	A3128 (NE)
				S/N <	< 6 and Optically Conf	ìrmed			
ACT-CL J0616-5227	06:16:36	-52:27:35	5.9	0.50	-155 ± 26	-431 ± 73	1.70 ± 0.29	0.71	New
ACT-CL J0559-5249	05:59:43	-52:49:13	5.1	2.25	-155 ± 31	-194 ± 38	0.77 ± 0.15	0.61	SPT-CL J0559-5249
ACT-CL J0215-5212	02:15:18	-52:12:30	4.9	0.25	-140 ± 29	-801 ± 164	3.16 ± 0.65	0.51	New
ACT-CL J0509-5341	05:09:21	-53:42:05	4.8	0.50	-115 ± 24	-319 ± 67	1.27 ± 0.27	0.46	SPT-CL 0509-5342
ACT-CL J0641-4949	06:41:35	-49:48:32	4.7	0.25	-283 ± 60	-1625 ± 375	6.41 ± 1.48	0.15	A3402
ACT-CL J0232-5257	02:32:45	-52:57:08	4.7	0.25	-124 ± 26	-710 ± 152	2.80 ± 0.60	0.59	New
ACT-CL J0516-5430	05:16:30	-54:30:30	4.6	1.75	-143 ± 31	-192 ± 43	0.77 ± 0.17	0.29	AS0520/SPT-CL 0517-5430
ACT-CL J0346-5438	03:46:51	-54:38:54	4.4	1.25	-131 ± 30	-198 ± 45	0.78 ± 0.18	0.55	New
ACT-CL J0217-5245	02:17:11	-52:45:20	4.1	1.25	-98 ± 24	-150 ± 37	0.59 ± 0.14	0.34	RXC J0217.2-5244
ACT-CL J0145-5301	01:44:59	-53:01:01	4.0	1.00	-99 ± 25	-167 ± 42	0.65 ± 0.16	0.12	A2941
ACT-CL J0237-4939	02:37:03	-49:39:27	3.9	1.00	-140 ± 36	-236 ± 61	0.93 ± 0.24	0.40	New
ACT-CL J0304-4921	03:04:15	-49:21:42	3.9	1.00	-169 ± 43	-285 ± 74	1.12 ± 0.29	0.47	New
ACT-CL J0707-5522	07:07:13	-55:22:48	3.3	1.75	-218 ± 67	-293 ± 90	1.16 ± 0.35	0.43	New
ACT-CL J0528-5259	05:28:03	-52:59:53	3.1	0.50	-88 ± 28	-244 ± 78	0.94 ± 0.30	0.77	SPT-CL 0528-5300

Marriage et al. ApJ, 2011

Elia Stefano Battistelli – Planck Conference – 16th February 2012 Marriage et al. ApJ, 2011

Menanteau et al. ApJ, 2010 Elia Stefano Battistelli – Planck Conference – 16th February 2012

Marriage et al. ApJ, 2011

ACT: tSZ -- the case of "El Gordo"

ACT-CL |0102-4915, Z=0.870

- ACT:
 - ACT-CL J0102-4915: new discovery
 - ~1mK decrement
 - y ≅ 5 10⁻⁴
- Optical follow-up (SOAR/SOI + VLT/FORS2):
 - 89 spectra \rightarrow z=0.870
 - σ_{gal}=1321 km/s
 - Strong lensing arc
- SPITZER:
 - < 1% stellar mass
- X-ray: Chandra
 - Integrated T_x=14.5±1.0 keV
 - Temp. variation from 6 to 22 keV
 - Cometary shape...even a double tail
- Combined mass: M₂₀₀=(2.16±0.32) 10¹⁵ h⁻¹₇₀ M_{sun}; on the edge of the mass distribution produced with simulations
- Major merger with 2÷1 components
- High redshift Bullet cluster? E

ACT (148 GHz) -385µK-85µK

Image courtesy of F. Menanteau

Marriage et al. ApJ, 2011 Menanteau et al. ApJ 2012

ACT: tSZ -- the case of "El Gordo"

- ACT:
 - ACT-CL J0102-4915: new discovery
 - ~1mK decrement
 - $y \cong 5 \ 10^{-4}$
- Optical follow-up (SOAR/SOI + VLT/FORS2):
 - 89 spectra → z=0.870
 - σ_{gal}=1321 km/s
 - Strong lensing arc

• SPITZER:

- < 1% stellar mass
- X-ray: Chandra
 - Integrated T_x=14.5±1.0 keV
 - Temp. variation from 6 to 22 keV
 - Cometary shape...even a double tail
- Combined mass: M₂₀₀=(2.16±0.32) 10¹⁵ h⁻¹₇₀ M_{sun}; on the edge of the mass distribution produced with simulations
- Major merger with 2÷1 components
- High redshift Bullet cluster? E

Image courtesy of F. Menanteau

Marriage et al. ApJ, 2011 Menanteau et al. ApJ 2012

ACT: tSZ –the case of "El Gordo"

- ACT:
 - ACT-CL J0102-4915: new discovery •
 - ~1mK decrement •
 - $v \cong 5 \ 10^{-4}$ •
- Optical follow-up (SOAR/SOI + VLT/FORS2):
 - 89 spectra \rightarrow z=0.870 0
 - σ_{gal} =1321 km/s
 - Strong lensing arc
- SPITZER:
 - < 1% stellar mass
- X-ray: Chandra
 - Integrated T_x=14.5±1.0 keV 0
 - Temp. variation from 6 to 22 keV
 - Cometary shape...even a double tail •

 $kT = 6.6 \pm 0.7 \text{ keV}$ $= 22^{+6}_{1} \text{ keV}$ arcsec 0.04 0.03 1' Chandra/ACIS

Image courtesy of F. Menanteau

High redshift Bullet cluster? Elia Stefano Battistelli – Planck Conference – 16th February 2012

Marriage et al. ApJ, 2011 Menanteau et al. ApJ 2012

ACT: tSZ -- the case of "El Gordo"

- ACT:
 - ACT-CL J0102-4915: new discovery
 - ~1mK decrement
 - $y \cong 5 \ 10^{-4}$
- Optical follow-up (SOAR/SOI + VLT/FORS2):
 - 89 spectra → z=0.870
 - σ_{gal} =1321 km/s
 - Strong lensing arc
- SPITZER:
 - < 1% stellar mass
- X-ray: Chandra
 - Integrated T_x=14.5±1.0 keV
 - Temp. variation from 6 to 22 keV
 - Cometary shape...even a double tail
- Combined mass: M_{200} =(2.16±0.32) 10¹⁵ h⁻¹₇₀ M_{sun} ; on the edge of the mass distribution produced with simulations
- Major merger with 2÷1 components
- High redshift Bullet cluster? *Elia Stefano Battistelli Planck Conference 16th February 2012*

Image courtesy of F. Menanteau

Menanteau et al. ApJ 2012

•

ACT: tSZ -- the case of "EI Gordo"

Menanteau et al. ApJ 2012

- SPITZER:
- X-ray: Chandra
- Combined mass: M_{200} =(2.16±0.32) 10¹⁵ h⁻¹₇₀ M_{sun}; on the edge of the mass distribution produced with simulations
- Major merger with 2÷1 components
- High redshift Bullet cluster? Elia Stefano Battistelli Planck Conference 16th February 2012

Summary

•ACT: instrument and observations

•Maps and power spectrum

Cosmological parameters

•Gravitational lensing in CMB maps

point sources

•SZ clusters and follow-up: the case of "El Gordo"

The end: thank you!

Barcelona ICE (Spain) University of Pennsylvania (US) Princeton (US) PI: Lyman Page UBC (Canada) University of Pittsburgh (US) University of Cape Town (S. Africa) Cardiff University (UK) Pontifica Universidad Catolica (Chile) Rutgers (US) Columbia (US) Haverford (US) CITA/University of Toronto (Canada) **INAOE** (Mexico) and collaborators at: University of Kwa-Zulu Natal (S. Africa) Sapienza MPI University of Massachusetts (US) Stanford Berkeley Chicago NASA/GSFC (US) Miami LLNL NIST (US) CfA Oxford (UK) IPMU/Tokyo

Elia Stefano Battistelli – Planck Conference – 16th February 2012

NIST CARDIFF UNIVERSITY PRIFYSGOL

🔊 🖉 🎂 🌠 🧏

RUTGERS