Improved Model of Spinning Dust Emission and Implications

Thiem Hoang (UW-Madison)

in collaboration with

Alex Lazarian (UW-Madison), Bruce T. Draine (Princeton)

Outline

- Motivation
- Galactic Foregrounds to CMB and Anomalous Microwave Emission
- Draine & Lazarian Model (DL98, Alex's talk)
- Improved Model of Spinning Dust
- Constraining Physical Parameters using WMAP data
- Summary and Future Works

Motivation: Precision Cosmology WMAP

cleaning

Understanding

Galactic Foregrounds

WMAP Cosmological Parameters	
Model: lcdm	
Data: wmap+sdss	
$10^2\Omega_b h^2$	$2.230^{+0.071}_{-0.070}$
$\Delta_R^2(k = 0.002/\text{Mpc})$	$(24.1 \pm 1.3) \times 10^{-10}$
h	0.710 ± 0.026
H_0	$71.0 \pm 2.6~\mathrm{km/s/Mpc}$
$n_s(0.002)$	$0.948^{+0.016}_{-0.015}$
$\Omega_b h^2$	$0.02230^{+0.00071}_{-0.00070}$
Ω_{Λ}	0.735 ± 0.030
Ω_m	0.265 ± 0.030
Ω _m h² Spergel et at.±2003	

Improved Model of Spinning Dust

Step 1: Improve grain rotational dynamics

-Grain precession, internal relaxation

(Hoang, Draine & Lazarian 2010, ApJ, 465, 1602)

Silsbee, Ali-Haimoud & Hirata 2011: Grain precession, no internal relaxation

Step 2: Deal with realistic grain shape

- Triaxial ellipsoid (irregular shape)
- Grain wobbling

(Hoang, Lazarian & Draine 2011, ApJ, 741, 87)

What are small dust grains? PAHs

Step 1: Grain Precession

Spinning Dust: Power Spectrum

Torque-free motion: Euler angles

$$\phi,\psi, heta$$

and rates:

$$\dot{\theta} = 0, \dot{\psi} = \frac{J\cos\theta(1-h)}{I_1}, \dot{\phi} = \frac{J}{I_2}$$

Fourier Transform:

$$\ddot{\mu}_{i,k} = \int_{0}^{\infty} \ddot{\mu}_{i}(t) \exp(-i2\pi v_{k}t) dt, i = x, y, z$$

Power Spectrum:

$$P_{\text{ed},k}(J,\theta) = \frac{2}{3c^3} \sum_{i} (\ddot{\mu}_{i,k})^2$$

Power Spectrum

 $\omega/(J/I_{II})$

Rotational Damping and Excitation

Numerical Method: Langevin Equations

Angular momentum J in the lab system is described by Langevin equations (LEs):

$$dJ_{i} = A_{i}dt + \sqrt{B_{ii}}dq_{i},$$

$$A_{i} = \sum \left\langle \frac{\Delta J_{i}}{\Delta t} \right\rangle, B_{ii} = \sum \left\langle \frac{(\Delta J_{i})^{2}}{\Delta t} \right\rangle, \left\langle dq^{2} \right\rangle = dt$$

- Integrate LEs to get J(t) and find momentum distribution f
- Emissivity per H atom:

$$j_{\nu}^{a} = \int \sum_{\text{mod}} prob_{\text{mod}} (\omega \mid J) P_{\text{ed}}(J) 2\pi f_{J} dJ$$

$$= \frac{j_{\nu}}{n_{\text{H}}} = \frac{1}{4\pi} \frac{1}{n_{\text{H}}} \int da \frac{dn}{da} j_{\nu}^{a}$$

$$\frac{j_{\nu}}{n_{\rm H}} = \frac{1}{4\pi} \frac{1}{n_{\rm H}} \int da \frac{dn}{da} j_{\nu}^{a}$$

Emission Spectrum

- Peak emissivity increases by a factor ~2.
- Peak frequency increases by factors ~1.4 to 1.8.

Step 2: Irregular Shape

Power Spectrum

Multiple frequency modes:

HLD11

$$\omega_m = \langle \dot{\phi} \rangle + m \langle \dot{\psi} \rangle, m = 0, \pm 1, \pm 2...,$$

$$\omega_n = n \langle \dot{\psi} \rangle, n = 0, 1, 2$$

where <...> denotes time averaging.

Emission Spectrum

- Working model: Simple irregular shape
- Irregularity: eta=b₃/b₂

★ Emissivity increases with T_{vib}

Constraining Physical Parameters: Fitting to WMAP data

Fitting to H \alpha -correlated spectrum

Model:
$$I_{\nu}^{\text{mod}} = F_0 \left(\frac{v}{23 \text{GHz}} \right)^{-0.12} + S d_0 \left[\frac{I_{\nu}^{\text{sd}}}{I_{\text{H}\alpha}} \right]_{\text{WIM}} + C_0 \left(\frac{v}{23 \text{GHz}} \right)^2$$

Minimizing:

$$\chi^2 = \sum_{\nu} \left(I_{\nu}^{\text{mod}} - I_{\nu}^{\text{obs}} \right)^2 / \sigma_{\nu}^2$$

Fitting parameters:

F₀: e temperature

Sd₀: variation of PAH abundance

Spinning dust parameters: n_H, dipole moment

- \star $F_0=0.09 \rightarrow T_e \sim 2500 \text{ K (Dong & Draine 2011 explain low } T_e)$
- \star Sd₀=0.06 → PAH depleted in WIM
- ★ Dipole β_0 ~ 0.65 D, n_H ~0.11 cm⁻³

Summary and Future Works

- 1. Improved model accounts for wobbling grain, irregular shape internal relaxation, transient events.
- 2. Improved model can reproduce high peak frequency in Hα-correlated spectrum from WMAP data.
- 3. Improved model can be used to diagnose dust physical parameters.

4. Future works will address polarization from spinning dust and implications to B-mode of CMB polarization experiments.

Thermal Dust-Correlated Spectrum

$$\frac{I_{\nu}^{\text{mod}}}{T_{94\text{GHz}}} = Sd_0 \frac{I_{\nu}^{\text{sd}}(\text{CNM})}{T_{94\text{GHz}}} + C_0 \left(\frac{\nu}{23\text{GHz}}\right)^2 + T_0 \left(\frac{\nu}{94\text{GHz}}\right)^{3.8}$$

$$\star$$
 T₀=0.8

$$Sd_0 \sim 0.9$$

$$\beta_0 = 0.95 D, n_H \sim 10 cm^{-3}$$