Partor C-Band All-Sky Survey (C-BASS)

CCCCC

Angela Taylor University of Oxford

مدينة الملك عبدالعزم الملوم والتقنية الملك

P_{hysics} C-Band All-Sky Survey (C-BASS)

University of Oxford, UK

Matthew Brock, Charles Copley, Christian Holler*, Jaya John John, Mike Jones, Jamie Leech, Angela Taylor, Joe Zuntz

(* now at University of Esslingen, Germany)

University of Manchester, UK

Rod Davies, Richard Davis, Clive Dickinson, Melis Irfan, Paddy Leahy

Caltech/JPL, USA

Dayton Jones, Russ Keaney, Oliver King, Stephen Muchovej, Tim Pearson, Tony Readhead, Matthew Stevenson

South Africa

Roy Booth (HartRAO), Justin Jonas (Rhodes), William Walbrugh

KACST, Saudi Arabia

Yasser Hafez, Fahad Albaqami

Collaboration meeting, Oxford, July 2011

C-BASS - Overview

Sky-coverage	All-sky	
Angular resolution	0.73 deg (43.8 arcmin)	
Sensitivity	< 0.1mK r.m.s	
Stokes coverage	I, Q, U, (V)	
Tsys	~20K, including sky	
Frequency	1 GHz bandwidth, centered at 5 GHz	
Northern site	OVRO, California	
	Latitude, 37.2 deg	
Southern site	MeerKAT site, Karoo, South Africa Latitude -30.7 deg	

C-BASS - Science Goals

Primary aims:

- To provide all-sky maps in I, Q and U at 5 GHz for the community.
- To allow more accurate subtraction of the polarized Galactic synchrotron emission from e.g. WMAP, Planck and future B-mode experiments.

Secondary aims:

- To map the local (≤1 kpc) Galactic magnetic field and improve our understanding of the the propagation of cosmic rays through it.
- To further study the distribution of anomalous dust.
- To improve the modeling of Galactic total intensity emission and hence allow CMB experiments to access the currently inaccessible region close to the Galactic plane.
- Help our understanding of / belief in the Galactic Haze....

Why a 5 GHz survey?

Why a 5 GHz survey?

- Halfway (in log v) between surveys at 1.4 GHz (Stockert, Reich & Reich) and 23 GHz (WMAP).
- Expected high-latitude Faraday rotation a few degrees, c.f. ~30° at 2.3 GHz.
- Below main emission from anomalous dust, so predominantly synchrotron.
- Signal still strong enough (few mK) to measure in a reasonable time (< 1 year) with a single receiver.
- 'Planck 5 GHz channel' (© R Davis)

P_{hysics} Impact on Planck results (1)

	Planck	Planck+CBASS	Typical high latituda 1 dag piya
Stokes I			Mean synch amplitude 80 uK@
CMB mean error (µK)	5.4	4.0	23 GHz MCMC reconstruction
Synch amp error (µK)	1.4	0.44	
Synch index error	0.29	0.03	
Dust amp error (µK)	3.4	2.8	25% improvement
Dusts index error	0.26	0.29	\times 3 improvement
Stokes Q,U			$\times 10$ improvement
CMB mean error (µK)	3.6	2.7	25% improvement
Synch amp error (µK)	0.67	0.17	\times 4 improvement
Synch index error	0.29	0.03	× 10 improvement
Dust amp error (µK)	1.3	0.97	
Dust index error	0.26	0.29	

The C-BASS Survey

C-BASS North Telescope

- 6.1-m dish, with Gregorian optics
- Secondary supported on foam cone
- Receiver sat forward of the dish
- Very clean, circularly-symmetric optics
- Absorbing baffles to minimize spillover

Dxford C-BASS North: beam measurements

(see Holler et al. 2011, arXiv:1111.2702v2)

C-BASS North Receiver

- Analogue correlation polarimeter
- Correlate RCP & LCP \rightarrow Q, U
- Difference RCP & LCP separately against internal load \rightarrow I, V

Survey Parameters

- 360° scans at constant elevation.
- Deep NCP scans for check of systematics.
- Survey data at 2 elevations
 - Through NCP

xford

hysics

- Through NCP + 10 °
- Scan speed of 4 deg/s \rightarrow scan in 90s
 - Need fknee < 10 mHz ($\sqrt{\text{Receiver works}}$)
- Pointing and opacity and flux calibration every 2 hours.
- Continuous gain monitoring via noise diode injection.
- Estimate of 6 months continuous observing for full hemisphere survey down to 0.1mK.

Simulation of single elevation scans through NCP and SCP.

- Daytime only for 6 months.
- Random drop-outs added.
- Very good coverage at poles and overlap region.
 - NCP + 10° and SCP +10° fill in mid declinations.

C-BASS North Site (1)

C-BASS North Site (2)

C-BASS North: Early maps

- Full survey operations started Nov. 2011
- Busy digging deep into the data....
- Example of ~2 weeks night-time only data
- Only internally calibrated, almost raw data
 - No astronomical calibration
 - No opacity correction
 - No destriping

C-BASS North: Early maps

- Tau A
- Internally calibrated
- Polarization measured at expected value

- DR21
- Internally calibrated
- No polarization detected - as expected
- Raw cross-polar leakage < -20dB

(Prediction from optics alone is < -50dB)

- CBASS South in the Karoo desert, South Africa
- 7.6m ex-telecoms dish
- Cassegrain optics

xford

hysics

C-BASS South

QuickTime[™] and a decompressor are needed to see this picture.

•Performance matched to CBASS North

•No need for baffles - dish is very underilluminated

C-BASS South Receiver

xford

hysics

- Digital correlation polarimeter two down-converted channels of 500 MHz sampled in 1st and 2nd Nyquist zones
- 2 x ROACH FPGA board each with 4 x 1 GS/s ADC inputs
- 64-channel spectrometer per ROACH -- 128 channels in total

Current Status

• C-BASS North observing...

xford

hysics

- C-BASS South comissioning in Oxford
- ~ May 2012 ship C-BASS South to SA
- ~ Oct 2012 start CBASS South survey
- ~ Dec 2012 end of C-BASS North
- ~ Apr 2013 1st northern survey papers
- ~ Oct 2013 end of C-BASS South
- ~ Apr 2014 1st full survey papers
- ~ Oct 2014 plan for first data release
- Project, receiver description and commissioning papers coming soon
- See Melis Irfan's poster too!

Charles Copley testing C-BASS South in Oxford

