A Detailed Investigation of the HII Region RCW175: from radio to mid-IR wavelengths

Christopher Tibbs

IPAC/Caltech

In collaboration with:

Roberta Paladini, Clive Dickinson, Mathieu Compiègne, Nicolas Flagey, Alberto Noriega-Crespo, Sean Carey, Sachindev Shenoy, Kieran Cleary, Simon Casassus, Yacine Ali-Haïmoud, Chris Hirata

Tibbs et al. to be submitted

 RCW175 has been observed extensively all the way from radio to mid-IR wavelengths.

Frequency (GHz)	Telescope/ Survey	Reference for Data	Angular Resolution (arcmin)
1.4	Effelsberg 100 m	Reich et al. (1990a)	9.4
2.7	Effelsberg 100 m	Reich et al. (1990b)	4.3
5	Parkes 64 m	Haynes et al. (1978)	4.1
8.35	Green Bank 13.7 m	Langston et al. (2000)	9.7
10	Nobeyama 45 m	Handa et al. (1987)	3.0
14.35	Green Bank 13.7 m	Langston et al. (2000)	6.6
31	CBI	Dickinson et al. (2009)	4.3
94	WMAP	Jarosik et al. (2011)	13.2
599.6 (500 μm)	Herschel/SPIRE	Molinari et al. (2010)	0.6
856.5 (350 μm)	Herschel/SPIRE	Molinari et al. (2010)	0.4
1199.2 (250 µm)	Herschel/SPIRE	Molinari et al. (2010)	0.3
1873.7 (160 µm)	Herschel/PACS	Molinari et al. (2010)	0.2
2997.9 (100 µm)	IRIS	Miville-Deschênes & Lagache (2005)	4.3
4282.7 (70 µm)	Herschel/PACS	Molinari et al. (2010)	0.1
4996.5 (60 μm)	IRIS	Miville-Deschênes & Lagache (2005)	4.0
11991.7 (25 µm)	IRIS	Miville-Deschênes & Lagache (2005)	3.8
12491.4 (24 µm)	Spitzer/MIPS	Carey et al. (2009)	0.1
24982.7 (12 μm)	IRIS	Miville-Deschênes & Lagache (2005)	3.8
37474.1 (8 µm)	Spitzer/IRAC	Churchwell et al. (2009)	0.03

		0		
NVSS 1.4 GHz	Effelsberg 1.4 GHz	Effelsberg 2.7 GHz	Parkes 5 GHz	Green Bank 8.35 GHz
		0		3
Nobeyama 10 GHz	Green Bank 14.35 GHz	CBI 31 GHz	WMAP 94 GHz	SPIRE 500 micron
		1. Jos		Je .
SPIRE 350 micron	SPIRE 250 micron	PACS 170 micron	IRIS 100 micron	PACS 70 micron
D	Ø		-5	
IRIS 60 micron	IRIS 25 micron	MIPS 24 micron	IRIS 12 micron	IRAC 8 micron

(Dickinson et al. 2009)

Herschel HiGAL 70, 160, 250, 350 and 500µm data

Spitzer MIPS 24µm and IRAC 8µm data

Morphology of RCW175

Blue = 8μm, green = 24μm, red = 350μm

 Galactic HII region originally identified by Sharpless (1959)
Consists of 2 separate components, G29.1-0.7 and G29.0-0.6

Morphology of RCW175

Blue = 8μm, green = 24μm, red = 350μm

¹³CO (1-0) data from the Galactic Ring Survey (Jackson et al. 2006)

¹²CO (1-0) data from the Massachusetts-Stony Brook Galactic Plane Survey (Sanders et al. 1986)

=> D = 3.2 ± 0.1 kpc and R = 5.4 ± 0.2 kpc

Astrophysics from the radio to the submillimetre

Morphology of RCW175

- CO traces the compact component G29.0-0.6 and the dust filament along the edge of G29.1-0.7.
- Similarity between the CO data and the Herschel data.

Dust Modelling

- DUSTEM (Compiègne et al. 2011) is a dust emission model based on the formalism of the Desert et al. (1990) model.
- Previously been used to characterise the dust properties:
 - in the regions of diffuse emission on the Galactic plane (Compiègne et al. 2011)
 - in the Eagle Nebula (Flagey et al. 2011)
 - in the Perseus molecular cloud (Tibbs et al. 2011)

Dust Modelling

- $_{\odot}~$ Use IR data 8, 24, 70, 160, 250, 350 and 500 $\mu m.$
- Convolve all maps to common angular resolution of 35 arcsec.
- Use DUSTEM with grain species:
 - \circ PAH^o + PAH⁺ => PAHs
 - o SamC => VSGs
 - o LamC + aSil => BGs
- Fit for:
 - $_{\odot}~$ Abundance of PAHs and VSGs with respect to BGs (Y_{PAH} and Y_{VSG})
 - $_{\odot}$ Interstellar radiation field (χ_{ISRF})

Astrophysics from the radio to the submillimetre

Dust Modelling

SED

 $S_{31GHz}/S_{100\mu m} = 5.8 \pm 1.1 \times 10^{-4}$

~80% of the 31GHz is anomalous

- Flux densities computed using aperture photometry.
- This is an update of the SED produced by Dickinson et al. (2009) for this region.
- We simultaneously fit the data with two power-laws, spinning dust model (WIM) and 2 modified black body curves.
- Find synchrotron contribution from nearby SNRs.
- We fit 2 modified black body curves to represent the cold and warm dust as we know the entire region is not at one temperature.
- We fit a generic WIM spinning dust model.

YSO Candidates

- Use the MIPSGAL Point Source catalogue (Shenoy et al. in prep) which is band merged with the GLIMPSE (3.6, 4.5, 5.8 and 8µm) and 2MASS (J, H and K) source catalogues.
- We select only sources with > 95% reliability, and find 95 sources with vicinity of RCW175.
- To find YSOc we implement a colourcolour selection criteria adopted from Rebull et al. (2010).

YSO Candidates

- Use the MIPSGAL Point Source catalogue (Shenoy et al. in prep) which is band merged with the GLIMPSE (3.6, 4.5, 5.8 and 8µm) and 2MASS (J, H and K) source catalogues.
- We select only sources with > 95% reliability, and find 95 sources with vicinity of RCW175.
- To find YSOc we implement a colourcolour selection criteria adopted from Rebull et al. (2010).

YSO Candidates

C. Tibbs

Origin of the AME

C. Tibbs

Origin of the AME

Origin of the AME

- The Orion Bar in the Orion nebula
- Exposed to a strong radiation field => PDR
- Many studies on this region.
- One such study by study by Bernard-Salas et al. (2011) which shows the stratification present in PDRs.

Fine structure line mapping using Herschel PACS spectrometer. [CII] 158µm; [NII] 122µm; [OI] 145µm; [OI] 63µm.

C. Tibbs

Origin of the AME

Origin of the AME

Conclusions

- The CBI 31 GHz emission is originating from 2 peaks of AME.
 - One of the peaks is located towards G29.0-0.6 and the other is located towards G29.1-0.7.
- The AME is correlated with the exciting ISRF in both components.
- The AME in G29.1-0.7 is not correlated with the PAHs in the PDR and we speculate that the major gas ions may be contributing to the observed spinning dust.