# High-frequency predictions for number counts of extragalactic radio sources and their impact on CMB experiments

Marco Tucci

LAL, Univ Paris–Sud, CNRS/IN2P3, Orsay, Paris

#### Luigi Toffolatti

Universidad de Oviedo, Spain

# Basic classification of Extragalactic Radio Sources (ERS)

At flux densities of mJy–Jy, ERS are dominated by  $\mathbf{AGN}-\mathbf{powered}$  sources.

"Unification" scheme: observed properties depend on the orientation of AGN jets relative to the observer.

Classification:  $(S \propto \nu^{\alpha}, \text{ at GHz frequencies})$ 

 $\alpha \ge -0.5 \longrightarrow Blazars$ (flat-spectrum radio Quasars; BLLacs)

 $\alpha < -0.5 \longrightarrow$  Steep–Spectrum Sources (Quasars; radio galaxies)



#### ERS spectral behaviour at cm–mm wavelengths

ERS spectra can be approximated to a power law only in a small range of frequencies.

Different mechanisms are responsible for this:

- steepening due to high–energy electron ageing
- transition from optically thick to optically thin regimes
- at different wavelengths emission dominated by different components with different spectra



## ERS number counts at high–frequencies

Two reference models: Toffolatti et al. 1998 (T98); de Zotti et al. 2005 (dZ05)

Determination of **epoch-dependent luminosity functions** for the different populations of ERS, by fitting available data on luminosity functions, redshift distributions, number counts.

- Simple power-law spectra for blazars:  $\alpha_{flat} = -0.1$
- Good results for the total n(S) at  $\nu \lesssim 5 \,\text{GHz}$ , but not for the single ERS populations
- Partially good results for the total n(S) at  $\nu > 5$  GHz, but:
  - **T98 scaled by** ~ 0.7 to match WMAP n(S) ( $\nu < 100 \,\text{GHz}$ );
  - dZ05 scaled by ~ 0.5 to match *Planck*–HFI counts ( $\nu \gtrsim 100 \text{ GHz}$ ).

#### New model to estimate ERS number counts

(MT, L.Toffolatti, G.deZotti & E.Martinez–Gonzalez, 2011, A&A, 533, A57)

First step:

• **5–GHz number counts** for steep– and flat–spectrum sources.

• spectral index distribution at 1.4–5 GHz using NVSS, GB6 surveys.



## Second step: Extrapolation of 5–GHz flux densities to higher frequencies

- Steep-spectrum sources: average steepening of  $\Delta \alpha = 0.3$  after 5 GHz (Bolton et al. 2004; Ricci et al. 2006; AT20G data)
- Inverted-spectrum sources  $(\alpha_1^5 > 0.3)$ : a broken power-law spectrum, with the peak at  $\nu \leq 20$  GHz for most of them; few per cent are still inverted at  $\nu > 40$  GHz.
- Flat-spectrum sources (blazars): a break in the flat spectrum at  $\nu_M$

$$S(\nu) = \begin{cases} S(\nu_M) (\nu/\nu_M)^{\alpha_{fl}} & \text{if } \nu \le \nu_M \\ S(\nu_M) (\nu/\nu_M)^{\alpha_{st}} & \text{if } \nu \ge \nu_M & \alpha_{st} = -0.8 \pm 0.2 \end{cases}$$



# Model of synchrotron emission from inhomogeneous relativistic jet

(Blandford&Konigl 1979; Marscher&Gear 1985; Valtaoja et al. 1992)

Flat spectra result from the **superposition of different components** of the inner parts of AGN relativistic jets (typically at  $10^4-10^5 R_g$  from central AGN core), each with different self-absorption frequency.



 $10^4 R_g \sim 1 \,\mathrm{pc}$  for a Black Hole with  $10^9$  solar mass.



Above this frequency spectra steepen.

There is a **radius**  $r_M$  at which  $\nu_{sm} = \nu_{sb} (\nu_M)$ : the smallest radius from which self-absorbed synchrotron emission from the jet can be observed.

 $\implies$  At  $\nu \geq \nu_M$ , jet emission dominated by optically-thin synchrotron from  $r \geq r_M$ .

#### How to estimate of the Break Frequency

Homogeneous spherical model for a single emitting region

$$\nu_M \propto S_M^{2/5} \, \theta^{-4/5} \, H^{1/5} \, (1+z)^{1/5} \, \delta^{-1/5} \qquad \theta \simeq 2 \frac{(1+z)^2}{D_L} \, r_M \, \phi$$

If we assume:

• Equipartition condition for magnetic and electron energy density

• 
$$S_M = S_5 (\nu_M / 5)^{\alpha_{fl}}$$

• power-law energy distribution  $n_e(\gamma) = K \gamma^{2\alpha - 1}$ 

the break frequency  $\nu_M$  is a function only of the parameters:  $r_M$ ,  $\delta$ , z and of spectral indices  $(\alpha_{fl}, \alpha)$ :

$$\nu_M \approx C(\alpha, \, \alpha_{fl}) \, D_L \, (1+z)^{-1.5} \, \delta^{-0.5} \, r_M^{-1}$$

The key parameter is  $r_M$ : it defines the compactness of the emitting region at the  $\nu_M$  frequency.

- (C1)  $0.01 \le r_M \le 10 \,\mathrm{pc}$
- stronger constraints:

BL Lacs  $0.01 \le r_M \le 0.3 \,\mathrm{pc}$ FSRQ (C2Co)  $0.03 \le r_M \le 1 \,\mathrm{pc}$ (C2Ex)  $0.3 \le r_M \le 10 \,\mathrm{pc}$ 

**BL Lacs** characterized by lower intrinsic power and by a weaker external radiation field  $\implies$  we expect cooling less dramatic and more compact objects.



# Model predictions vs observations

Number counts at 20 GHz from ATCA and WMAP





 $\implies$  Best model (C2Ex): BL Lacs more compact than FSRQs. Break frequency is typically

#### $10 \lesssim \nu_M \lesssim 100 \,\mathrm{GHz}$ for FSRQs $\nu_M \gtrsim 100 \,\mathrm{GHz}$ for BL Lacs

• good agreement with 353, 545 GHz *Planck* counts (see talk by H.Dole)

#### **ERS vs CMB Power Spectrum**



#### **Polarization properties of ERS**

(MT & L.Toffolatti, Submitted to Advances in Astronomy)





#### Number counts of polarized ERS

 $\mathcal{P}(\Pi)$  modelled by a **log–normal distribution**:





#### Integrated number counts of polarized sources

We expect **Planck** to be able to detect polarized sources (at a confidence level  $\geq 95\%$ ) down to: ~0.2 Jy at 30 GHz;  $\leq 0.4$  mJy at 44–70 GHz; something better at HFI frequencies.

| $P_{lim}$ | $ u [{ m GHz}] $ |           |    |      |           |              |                     |  |
|-----------|------------------|-----------|----|------|-----------|--------------|---------------------|--|
| [mJy]     | 30               | 44        | 70 | 100  | 143       | 217          | 353                 |  |
| 80        | 78               | 66        | 54 | 47   | 40        | 34           | 28                  |  |
| 100       | 54               | 46        | 38 | 33   | <b>28</b> | <b>24</b>    | 20                  |  |
| 200       | 16               | <b>14</b> | 11 | 10   | 9         | 8            | 7                   |  |
| 400       | 4                | 4         | 3  | 3    | 3         | 3            | 2                   |  |
| WMAP      | 8                | 6         | 4  | (# d | etecte    | d, $P_{lim}$ | $\sim 0.3{\rm Jy})$ |  |

#### Polarization Power Spectra ( $C_{E,B\ell} = 1/2 \langle \Pi^2 \rangle C_{T\ell}$ )



# Conclusions

- A first attempt to predict high–frequency counts of ERS using physically grounded recipes to describe spectra of blazars.
- Our best model provides estimates of the break frequency in blazar spectra, well in agreement with observations:  $\nu_M$  is typically between 10 and 100 GHz for FSRQs and  $\gtrsim 100$  GHz for BL Lacs.
- These results imply that  $r_M$  is of parsec—scales, at least for FSRQs. Values of  $r_M \ll 1$  pc should be only typical for BL Lacs but rare for quasars.
- For *Planck*, ERS are not a strong contaminant for **CMB T**, **E power spectra** (enough removing or masking ERS with  $S_{lim} \ge 1.0 \text{ Jy}$ ).
- In **polarization**, we expect that *Planck* detect **dozen** (LFI channels) and maybe **few tens** (HFI channels) of ERS.
- ERS could be an important constraint for the detection of the cosmological B-mode if r < 0.01.</li>

#### Redshift and Doppler factor for FSRQs and BL Lacs



# **Spectral properties of ERS**

| $\nu[{\rm GHz}]$ | [5, 20]          | [20, 148]            | [5, 148]                 | [148, 220]           |  |  |
|------------------|------------------|----------------------|--------------------------|----------------------|--|--|
|                  | ACT (me          | edian $\pm \sigma$ ) | SPT (mean $\pm \sigma$ ) |                      |  |  |
|                  | $-0.07\pm0.37$   | $-0.39 \pm 0.24$     | $-0.13 \pm 0.21$         | -0.50                |  |  |
| model            | ACT simula       | ated sample          | SPT simula               | SPT simulated sample |  |  |
| C2Co             | $-0.09 \pm 0.31$ | $-0.21 \pm 0.28$     | $-0.14 \pm 0.30$         | $-0.36 \pm 0.39$     |  |  |
|                  |                  |                      |                          |                      |  |  |

| $\nu[{ m GHz}]$ | 44    | 70    | 100   | 143   | 217   |
|-----------------|-------|-------|-------|-------|-------|
| median          |       |       |       |       |       |
| Planck          | -0.06 | -0.18 | -0.28 | -0.39 | -0.37 |
| C2Co            | -0.13 | -0.17 | -0.19 | -0.21 | -0.24 |
| C2Ex            | -0.22 | -0.28 | -0.34 | -0.39 | -0.44 |