

MANCH

STER

UNIVERSITÀ DEGLI STUDI DI MILANO

The LSPE collaboration

Giorgio Amico, Elia Battistelli, Alessandro Baù, Paolo de Bernardis, Marco Bersanelli, Andrea Boscaleri, Francesco Cavaliere, Alessandro Coppolecchia, Angelo Cruciani, Francesco Cuttaia, Antonio D' Addabbo, Giuseppe D'Alessandro, Simone De Gregori, Francesco Del Torto, Marco De Petris, Lorenzo Fiorineschi, Cristian Franceschet, Enrico Franceschi, Massimo Gervasi, David Goldie, Anna Gregorio, Vic Haynes, Luca Lamagna, Bruno Maffei, Davide Maino, Silvia Masi, Aniello Mennella, Ng Ming Wah, Gianluca Morgante, Federico Nati, Luca Pagaño, Andrea Passerini, Oscar Peverini, Francesco Piacentini, Lucio Piccirillo, Giampaolo Pisano, Sara Ricciardi, Paolo Rissone, Giovanni Romeo, Maria Salatino, Maura Sandri, Alessandro Schillaci, Luca Stringhetti, Andrea Tartari, Riccardo Tascone, Luca Terenzi, Maurizio Tomasi, Fabrizio Villa, Giuseppe Virone, Stafford Withington, Andrea Zacchei, Mario Zannoni

Short Wavelength Instrument for the Polarization Explorer (bolometers, 80-250 GHz) PI de Bernardis

STRatospheric Italian Polarimeter (radiometers, 40-90 GHz) PI Bersanelli

P. de Bernardis Bologna 14 feb 2012

- The Large-Scale Polarization Explorer is
 - a spinning stratospheric balloon payload
 - flying long-duration, in the polar night
 - aiming at CMB polarization at large angular scales
 - using polarization modulators to achieve high stability
- Frequency coverage: 40 250 GHz (5 channels)
- Angular resolution: 1.5 2.3 deg FWHM
- Sky coverage: 20-25% of the sky per flight
- Combined sensitivity: 10 $\mu K arcmin$ per flight

The LSPE payload

A spinning gondola, rotated by torque motors around an azimuth pivot

Stokes polarimeter with cold stepping HWP and arrays of large-throughput bolometers at 90, 145, 220 GHz; FWHM 2.4° to 1.4°

Batteries (1GJ), telemetry, Attitude Control System, data storage

- The instrument will be flown at 38 km of altitude by a 800000m³ balloon, at the end of 2014.
- Stratospheric balloons can be flown during the polar night despite of the low temperature of the air (see e.g. Archeops)
- The currently selected launch site is in the Svalbard islands (78° N), and the expected flight path will be a circle at approximately constant latitude.
- With recovery in Greenland, the flight can be 2-3 weeks long. This has been tested already in the summer.
- The site is easily reacheable (international airport) and large payloads have already been launched from there.

PEGASO circumpolar flight (2007) launched from Longyearbyen

• The same thing can be done, with logistic complications, in Antarctica

Mission profile

Launch of the SORA experiment from the Longyearbyen airport (2009)

Sky Coverage

- The payload will just spin in azimuth during the flight.
- The telescopes of the two instruments will scan the sky at constant elevation. Performing a few elevation steps during the 2-3 weeks of the flight, more than 20% of the sky can be covered outside the galactic mask, with good cross-linking and significant integration time per pixel. (cfr. Farhang et al. astro-ph/1108.2043)

LSPE 145 GHz 10 deg elevation range

LSPE – ACS

- The payload spins at 2-3 rpm
- We use an azimuth pivot with torque motors similar to the ones used in BOOMERanG and Archeops (Pascale + Boscaleri AIP Conf. Proc. 616, 56, 2001)
- The rotation speed is sensed by a set of 3 laser-gyors, driving the ACS control loop.
- The power required to spin the payload (about 100W) is due to the friction in the thrust bearings of the azimuth pivot and is provided by Lithium batteries.
- Absolute attitude is reconstructed by means of a fast star sensor similar to the one used in Archeops (Nati et al., Review of Scientific Instruments, **74**, 4169, 2003)

SWIPE

- The Short Wavelength Instrument for the Polarization Explorer
- Uses overmoded bolometers, trading angular resolution for sensitivity
- Sensitivity of photon-noise limited bolometers vs # of modes:

SWIPE

- Overmoded detectors are obtained coupling large area bolometer absorbers to Winston horns.
- Example of large-throughput spider-web bolometer (being developed in Italy, F. Gatti)

• SWIPE bolometers will be made in Cambridge (Withington)

SWIPE

Overmoded detectors are obtained coupling large area bolometer absorbers to Winston horns.

Simulations confirm that about half of the modes collected by the Winston horn actually couple to the bolometer absorber (in single-polarization detectors).

14 feb 2012

SWIPE

Polarimetry is implemented with a classical Stokes configuration.

 The first optical element is a large diameter (50 cm TBC) HWP, obtained by means of diectric-embedded metal meshes (G. Pisano et al. Applied Optics, 47, 6251, 2008, and follow-ups)
 Capacitive Stack

CISPE SWIPE

LSPE-SAF: OPTICS REQUIREMENTS

800 mm

- The HWP will be rotated in steps using a low-friction cryogenic mechanism based on thrust bearings, similar to the one we have developed for PILOT (Salatino et al. A&A 528, A138, 2011).
- 11.25° step,
 1 step/min,
 < 10mW
- Precision position readout with optical fibers & pinholes

SWIPE

- Simulations show that a step/integrate approach with 11.25° per step, 1 step/min and a gondola spinning at 3 rpm is already very effective in removing 1/f and drifts.
- Assuming drifts are negligible, the white-noise sensitivity of SWIPE is compared to the HFI in the table below:

		PL/	ANCK	– HFI (1	LSPE – SWIPE (20%)					
Frequency (GHz)	100	143	217	353	545	857	90	145	220	
FWHM Resolution (arcmin)	9	7	6	5	5	5	144	114	96	
Sky coverage (%)	100	100	100	100	100	100	20	20	20	
Obs Time (months)	30	30	30	30	30	30	0.467	0.467	0.467	
Bandwidth (%)	33	33	33	33	33	33	25	25	25	
N_det (polarized)	8	8	8	8	0	0	37	58	83	
Channel NET (<u>uK</u> s^1/2)	25	31	45	140	//	//	2.47	3.25	3.21	
Integration/beam (s)	33	20	15	10	-	-	660	415	225	
Delta Q(U) (uK) on LSPE beams	0.27	0.42	0.84	2.6	-	-	0.10	0.16	0.21	
				• • •						
	Impro Planc	vemei k-HFI	nt facto (2º pixe	or with re els)	2.8	2.7	3.9			

- The STR atospheric Italian Polarimeter uses coherent polarimeters working at 40 and 90 GHz, with a target sensitivity twice better than Planck LFI
- The main target is the polarized foreground (synchrotron), studied by means of 49 polarimeters in Q band. This is mandatory for an effective component separation, to remove foreground contamination from the cosmological channels (90 & 140 GHz from SWIPE).
- The 9 polarimeters in W band performs the same measurements as the bolometric W-band channel, using a completely independent technique. This provides the opportunity for a direct comparison, very efficient in detecting systematic effects.
- The required angular resolution (1.5°) is obtained by means of a 1.5m diameter telescope, focusing on an array of corrugated feedhorns, followed by high efficiency pseudo-correlation polarimeters (similar to the QUIET ones, see K. A. Cleary, Proc. SPIE 7741, 77412H, 2010).

STRIP

The corrugated feedhorns arrays are produced using the platelets technology (see e.g. Del Torto et al. JNST 6, 6009, 2011).

P. de Bernardis Bologna 14 feb 2012

 High efficiency, wide band, polarizers and OMTs have been custom designed for this application at IEIIT

P. de Bernardis Bologna 14 feb 2012

STRIP

 The polarimeters are cooled at the optimal operation temperature by cold He gas, evaporating from a large (500L) He cryostat (G. Morgante)

					-			Vent	t 🛛		•	60,00	<u> /</u>	Fill	
Stage	4K	20K	100K	Comments		_ _	Pc	ontro] 100		Window	ers	× 25	<u>зок</u>
							Î	Heat		20K	24,90		Horr	ns	
Radiative (mW)	6,3 8	259, 06	6156 ,87	MLI 30 layers, 15 layers/cm				Vapor Exchi				Polarimeters flange Cryostat Cold Flange	Polar	s + izers	
Conductiv e (mW)	2,0 5	493, 89	3052 ,94	Piping in SS, Struts in G10, Wires in PhBronze (all harness in Flexi Cu with 20-30 cm thermal breaks)						4	3.00-	FPA Heat Exchanger			
Active (mW)	832 ,00	184 5,00	0,00	On 4K stage heater dissipation is added on top of the parasitics load to maintain massflow, on the 20K stage the polarimeters dissipation plus active temperature control (0,2W average)	176,50	161,00	150,00					LHel Tank (500 l) 86,00	86,00	-	Superinsulation
Total (mW)	840 ,42	259 7,95	9209 ,80	no margin											
with margin	109 2,5 5	337 7,34	1197 2,74	30% margin has been considered here				_	Sti	ruts		96,50			

14 feb 2012

P. de Bernardis Bologna

1.0 0.8 0.6

0.4

0.2

0.0

0.120

0.1000

13.0

Our target is r = 0.03, 3σ .

Expected performance of LSPE in constraining cosmological parameters, compared to Planck and SPIDER (simulation by L. Pagano) /

On the paper, a very competitive instrument

Certainly independent and using different methodology

0.067

Τ

0.093

LSPE schedule

Still a long way to go ...

event date

KO Apr. 29, 2011

- PDR Dec 20, 2011
- CDR Apr. 30, 2012
- IHDR Oct. 29, 2012
- TRR Aug. 29, 2013
- FAR Jan. 29, 2014
- Flight End of 2014

Balloons for CMB Polarization

- Balloon experiments can access high frequencies, necessary for foreground monitoring
- Balloons experiments can use the latest technology (e.g. polarization modulators, large detector arrays, multimoded systems)
- EBEX: Small angular scales Oxeley et al. Proc.SPIEInt.Soc.Opt.Eng. 5543: 320, (2004) astro-ph/astro-ph/0501111
- SPIDER: Intermediate scales Crill et al. Proceedings of SPIE Volume 7010 (2008), astro-ph/0807.1548
- LSPE: Large scales

 The signal we are looking for is so small and systematic effects are so important that only a set of consisting detections obtainied by completely independent experiments will be convincing.

more on balloons: see the poster by Masi et al. upstairs and A&A, **583**, A86 (2012)

