Astrophysical modeling of FAR-IR Sources

on behalf of the SISSA/PD/RM2 team

Special thanks to A. Lapi, J. Gonzalez-Nuevo, M. Negrello, Z. Cai

Overview

The observations of HERSCHEL and PLANCK confirmed and strengthened the evidence of a high-redshift z>1 galaxy population exhibiting:

-) SFR ~100 - 3000 M_sun/yr, in environment heavily obscured by dust (HERSCHEL)

-) having a high chance 10⁻³ to be strongly lensed by foreground galaxies (HERSCHEL)

-) strongly clustered (HERSCHEL+PLANCK)

STRONG LINK OF SUB-MM GALAXIES (progenitors) WITH LOCAL EARLY TYPE GALAXIES

- Given the properties of local Early Type Galaxies, can we interpret the high-z bright submm sources as their progenitors?
- Which are the main physical processes ruling star formation in the progenitors of local massive ETGs?
- Why these progenitors extremely rich in gas and dust, forming stars at fantastic rates evolve into quiescent galaxies quite poor in cold gas and dust?
- Why after their splendid short lived QSO phase, they end up with practically inactive massive (up to 10^9÷10^10 M_sol) BH in their center?

Hints from local ETGs...

ETGs with $M \ge 2 - 3 \ 10^{10} M$ _sun are dominated by stars which now appear as old as $\ge 7-8$ Gyr and formed at z \ge 1.

(Gallazzi+06)

By contrast stars in thin discs of Late Type Galaxies are much younger and formed mostly at z<1. Time available for star formation t \leq 1 Gyr for massive ETGs as probed by the α – enhancement (Fe depressed) $\log M./M_{\odot}$ of massive ETGs stars

SNIa not yet fully polluting the SNII yields with additional Fe

This implies that SF occurred within relatively short time-scale $t \le 1 Gyr$, which corresponds to the time of onset of a significant rate of SNIa explosion

Consequence on average SFR for a present day ETG with M= 10^{11} M_sun SFR =1.3-2 (IMF) x $10^{11}/10^9 \approx 200 - 300$ M_sun/yr

(Thomas+05)

Galaxies with such SFR would appear as strong UV emitters SFR=200 M_sol/yr corresponds to $M_{AB}(1700 A) \approx -24$ Partridge and Peebles 1967!

Where are they? N<< 10^{-6} Mpc^{-3}

Did ETGs form in small pieces gathering later on?

If dust absorbs \approx 80-90% of the UV then SFR \sim 200-300 M_sun/yr corresponds $L_{FIR} \approx 2 - 3 \ x 10^{12} \ L_{sun}$

Proto-ETGs appear with N ~ $10^{-3} - 10^{-4} Mpc^{-3}$ at z>1 (HERSCHEL ATLAS) !

DUST quite soon formed in order to get $\Delta t_{UV} \ll \Delta t_{FIR} \approx \Delta t_{SF} \sim 1 Gyr$

SFR>200-300 M_sun/yr lasting ~ 1 Gyr → massive M_star > 10^11 M_sun

From LF of passively evolving galaxies (proto-ETGs), it is apparent that massive galaxies M_{sun} are in place at z>1 with $N \sim 10^{-3} - 10^{-4} Mpc^{-3}$!

The formation of stars in massive ETGs is apparent at FIR/submm wavelengths. The formed stars detected at near-IR wavelengths

Massive ETGs and Bulges host SMBH in their center $M_{BH} \sim 10^{-3} M_{old \, stars}$ The Mass Function of inactive BH mirrors the Mass Function of the gas accretion which fuelled the QSOs activity (Salucci+99; Marconi+04; Shankar+04) FOR MASSIVE M> a few 10^10 M_star EARLY TYPE GALAXIES AND BULGES

- star formation starts at high $z \ge 1$
- Short SF time-scale <1 Gyr
- Massive BH ($M_{BH} \sim 10^{-3} M_{old \ stars}$)

FOR less MASSIVE M<10^10 EARLY TYPE GALAXIES AND BULGES

- star formation starts at high $z \geq 1$
- Long SF time-scale, SF lasting several Gyr
- Small Massive BH ($M_{BH} \lesssim 10^{-4} M_{old \ stars}$)

- Downsizing : in most massive ETGs SF has much shorter duty cycle than in less massive
- Local galaxy MFs show that star formation in DM halos globally is a rather inefficient process $\Omega_{star}/\Omega_{b} \sim 0.003/0.046 \sim 7 \%!$

Can far-IR and sub-mm observations highlight which (and how) physical mechanisms are ruling the galaxy formation at high redshift?

Two main possibilities :

- -) Secular (internal cooling + feedback SN and QSO) on short timescale (<1 Gyr)
- -) Cosmological Merging (several cycles of SF spread over a longer timescale >> 1-2 Gyr)
- \rightarrow We search for the dominant process (not exclusive)!

The fraction of stars formed in situ over a timescale <1 Gyr is the discriminating aspect! Secular predicts f(situ) >> f(accreted by merging)! By in situ we mean 1-10 kpc scale. This resolution has been achieved by follow up studies CO(1-0)

SMM J2135-0102 (Swinbank+11)

 $M_dyn \sim 6 \times 10^{10} M_sun$, within 2.5 kpc

M_gas/M_star ~ 60%

M_star + M_gas ~ M_dyn

V_rot ~ 320 km/s

V/sigma ~ 3.5

Q ~ 0.5 unstable disc

→ Similar results by e.g. Genzel+11

merge very rapidly and build up the halo potential well.
 SLOW accretion regime (low z): smooth accretion of matter (max 20%) in the outskirts of the halo, without affecting central regions.

Consequence for galactic (M_h<2-3 10^13 M_sol) halos:

> at virialization baryons are likely to be clumpy, and thus prompt to cool and condense;
 > dynamical friction is efficient in removing angular momentum, so that baryons likely do not settle in a stable disk-like structure (see Mo & Mao 2003; Tonini et al. 2006, Lapi & Cavaliere 2009, 2011);

> halos formed at z>1.5 are created and very rarely destroyed: formation rate is well approximated by positive term in the cosmic time derivative of the Sheth & Tormen (1999, 2002) mass function (see Haenhelt & Rees 1993, Sasaki 1996, Kitayama & Suto 1996).

Baryons in galactic DM halos multi-phase treatment

Basic equation from mass conservation (given halo mass and form. redshift)

Simple, standard parameterizations for infall rate, SFR and SN rate are assumed

IMF

Model @ z_{vir}=6 M_{DM}~10¹⁰⁻¹¹⁻¹²⁻¹³ M_{sun} **OSO** feedback $M_{\rm inf} = M_{\rm inf}^0 e^{-t/t_{\rm cond}} ;$ $M_{\rm cold} = \frac{M_{\rm inf}^0}{s\,\gamma - 1} \left[e^{-t/t_{\rm cond}} - e^{-s\,\gamma\,t/t_{\rm cond}} \right] ;$ 3 SFR [Mo yr-1 $M_{\star} = \frac{M_{\inf}^{0} s}{s \gamma - 1} \left[1 - e^{-t/t_{\text{cond}}} - \frac{1}{s \gamma} \left(1 - e^{-s \gamma t/t_{\text{cond}}} \right) \right] ;$ **SFR** 0 бo 3 $s \equiv t_{\rm cond}/t_{\star}$ $\gamma \equiv 1 - \mathcal{R} + \beta$ SN feedback only 12 11 M_{star} $[M_{\odot}]$ 10 QSO stops SF (in massive halos) at 9 stellar 8 mass log 7 $\Delta t_{\text{burst}} \approx 2.5 \times 10^8 \left(\frac{1+z}{7}\right)^{-1.5} \mathcal{F}\left(\frac{M_H}{10^{12}M_\odot}\right)$ 6 5 7.0 7.5 8.0 8.5 9.0 9.5 log t [yr]

Analytic solution can (remarkably) be found (impulsive QSO feedback)

BH related quantities

Matter funnelled through central regions by radiation drag, and stored in low-J reservoir around BH (Kawakatu & Umemura 2002).

$$M_{\text{inflow}} = \alpha_{\text{RD}} \times 10^{-3} M_{\star} \left(1 - e^{-\tau_{\text{RD}}} \right)$$

BH accretes at (mildly super) Eddington rates from an initial small seed

$$M_{\bullet} = M_{\bullet}^{0} e^{t/\tau_{ef}} \qquad \qquad M$$

BH stops growing when reservoir mass is exhausted

λ

$$M_{\rm res} = M_{\rm inflow} - M_{ullet}$$
 .

Joint Evolution of Galaxies and BHs

The Model from the Ground Up

Metals → rapid enrichment of the cold ISM (→ dust)
 For massive galaxies, Z~0.3 Z_sun over 3 x 10^7 yr

$$\dot{Z}_{\text{cold}} = \frac{Z_{\text{inf}} - Z_{\text{cold}}}{t_{\text{cond}}} \frac{M_{\text{inf}}(t)}{M_{\text{cold}}(t)} + \frac{\mathcal{R}_Z(t)}{t_{\star}} \qquad IM$$

$$\mathcal{R}_Z(t) \approx \int_{m_{\star,t}}^{m_{\star}^{sup}} \mathrm{d}m_{\star} \, m_{\star} \, q_Z(m_{\star}) \, \phi(m_{\star}) \, \frac{\dot{M}_{\star}(t - \tau_{m_{\star}})}{\dot{M}_{\star}(t)}$$

Analytic solution is found, with limiting behavior

$$Z_{\text{cold}} = Z_{\text{inf}}^0 + \frac{s}{s \gamma - 1} \mathcal{R}_Z(t)$$

The final metallicity increases with halo mass

1 G X 10 7 yi

Relevant model parameters

Fiducial values

Symbol	Description	Value
С	clumping factor	7
€ _{SN}	SN feedback efficiency	3%
α_{RD}	RD strength	1
λ	Eddington ratio	1
M_{\bullet}^{0}	BH seed mass	10² M _{sun}
E _{QSO}	QSO feedback efficency	5%
$ au^{0}$	optical depth IR γ (norm.)	1

Varying the clumping factor

And the second of the second o

Varying the SN feedback efficiency

Joint Evolution of Galaxies and BHs

Primeval Galaxies

11.0

12.6

12.8

13.0

log M_H [M₀]

13.2

8.4

13.4

M_H>13.5 no more galactic halos , but groups and clusters...smaller clumping, longer t_df \rightarrow lower SFR!

If we are locating the sub-mm galaxies into the 'right' DM halos, then we are going to get 'right' number densities, CIB, CIB power spectrum, clustering prop.

Parameters of our secular model fixed in Lapi et al (2006) by fitting relevant statistics

External Inputs*

OVERVIEW OF MODEL RESULTS

Property or Statistics	External Inputs*	
OSOs and BHs		
2505 una 1115		
$M_{\bullet} - M_{\rm vir}$	no add	
$\Delta t_{\text{peak}} - M_{\text{vir}}$	no add	
Opt. LFs (z)	$\Delta t_{\rm vis} \approx 5 \times 10^7 { m yr}, \Delta M_{\bullet} \approx 0.3 { m dex}$	
X-ray LFs (z)	$\Delta t_{\rm vis} \approx 3 \times 10^8 { m vr}$	
BH mass function	no add	
OSO clustering	no add	
$M_{\bullet} - \sigma$	no add	
Spheroidal Galaxies		
VDF	$\sigma/V_{\rm vir}$	
Faber-Jackson	$\sigma/V_{\rm nix}$	
LF(z)	IMF, SEDs (GRASIL)	
Metal abundances	IMF chemical yields	
K-hand counts	IMF dust modeling (GRASIL)	
850 µm counts	IMF dust modeling (GRASIL)	
EROS	IMF, dust modeling (GRASIL)	

Focus on millimeter and sub-millimeter selected galaxies (ATLAS)

Steep LF!!!!! Model agrees with data it is not an ad hoc fit; the parameters have been set in Lapi +06!

 $n(L_{FIR}) \propto L^{-4.8 \div -5.0}$

(Lapi+11)

SED SMM J2135. •

Flux / Luminosity ratio

Flux dimming compensated by K-correction!! The bright part of LF is 'always' visible!!

Same steepness of the LF in the counts!!!!!

Note: local objects are overwhelmed in a large flux range!

(Lapi+11)

Proto-ETGs

Dependence on SED: caution, but the main feature i.e. the steep rise is kept!

(Lapi+11)

Redshift with HERSCHEL far-IR photometry

Gonzalez-Nuevo+12

(Lapi+11)

IF LF (and hence counts) at z>1 are very steep sign Blain (96) Perrotta +02,03 Negrello +07

significant number of lensed galaxies (gal-gal)!

Negrello+10, Gonzalez-Nuevo + 11

Lensed galaxies counts: toward 1000 lensed galaxies in ATLAS survey!

Lapi+11

Xia+12

The large power implies that M_eff ~5 10^12 M_sun.

In the secular model this mass is predicted to have SFR \approx 200-300 and number density $n \approx 10^{-4} Mpc^{-3}$. The secular model places the right SFR into the right massive halos!

CORRELATION FUNCTION

 $z \simeq 2, r_0 \simeq 6.9 h^{-1} \text{ Mpc} \quad b_{\text{eff}} \simeq 3.$

Conclusion:

Local, massive ETGs

Old stellar populations age > 7 Gyr, z_sf > 1

Alpha-enhancement ∆ t_sf< 1 Gyr (but much longer in smaller galaxies)

High stellar metallicity Rapid enrichment of ISM

Steep local stellar mass function clustering properties →hosted in massive halos

BH-M_star relation

High-z submm galaxies (the progenitors) Redshift distribution z>1 + Strong lensing

Luminosity functions $\Delta t_sf < 1 \text{ Gyr}$

Dust soon in place (UV and submm LF)

Steepness of LF and counts + clustering + CIB fluct.

 \rightarrow hosted in massive halos ~ 3-5 10^12

Granato+01,04;Lapi+06

Secular cooling

+ SN/QSO feedback

 \checkmark

QSO luminosity function

HERSCHEL AND PLANCK data strongly support the conclusion that High z sub-mm gal are the progenitors of local massive ETGs! SUB-mm and Far-IR data highlight the problems of physical models based on merging!

Niemi+12

Hopkins+ 07

SUB-mm and Far-IR data highlight the problems of physical models based on merging!

Niemi+12

SUB-mm and Far-IR data highlight the problems of physical models based on merging!

Niemi+12