Synchrotron Surveys and their Astrophysical Interpretation J. P. Leahy

Picture: GALFACTS Collaboration

Astrophysics from the Radio to the Submillimetre, Bologna

What we talk about when we talk about Synchrotron Radiation

- Cosmic ray leptons (electrons, mostly)
 - > Origin
 - > Propagation
 - > Distribution
- Magnetic Fields (at source)
 - > Structure
 - Coherent/Ordered/Random
 - Intensity
- Propagation effects
 - Faraday Rotation
 - Free-free absorption

50 First surveys

- Many surveys exist but quality uneven
 - Strong et al (2011) for an up-to-date list
- Complications:
 - Below 300 MHz: freefree absorption, especially in the plane
 - Above 1 GHz: freefree emission
 - Below 5 GHz Faraday rotation
 - > Above 10 GHz: AME

Guzmán et al 2011

Astrophysics from the Radio to the Submillimetre, Bologna

45 MHz Survey

Dipole arrays

- Japan (Maeda et al 1999)
- Chile (Alvarez et al 1997)
- Merged map
 Guzmán et al (2011)
- Spectral index vs 408 MHz

GMIMS/STAPS: IQU at 21 cm

- Replacement for DRAO/Villa Elisa 21 cm survey
- Fully sampled
- 1.3 -1.8 GHz
- 2048 channels
 - for RM Synthesis
- I as well as Q U
- South from Parkes
 - STAPS (PI Haverkorn)
- Also 'low' band: 300 -900 MHz.

Wolleben et al (2010, ApJL)

GALFACTS

- Continuum Transit
 Survey with Arecibo
 L-Band Feed Array
 - > 32% of sky
- 3 arcmin beam
- 300 MHz
- 2048 channels
- Final maps will use GMIMS to recover large-scale structure

S-PASS

- 2.3 GHz Southern-sky polarization survey with Parkes
- 9' beam
- Data collected, processing under way
- Much less depolarized than 21 cm.
- Figs from Carretti (2011)
 - ATNF Newsletter

1.4 GHz (DRAO + Villa Elisa)

5 GHz all-sky survey
Talk by A. Taylor
Poster by M. Irfan

Astrophysics from the Radio to the Submillimetre, Bologna

Origin of CR

 Supernova remnants prominent in Galactic synchrotron emission
 Strong shocks

Pulsar winds

Astrophysics from the Radio to the Submillimetre, Bologna

Shock acceleration

• First-order Fermi (e.g. Bell 1978):

> N(E) \propto E^{-s}, I \propto $v^{-\alpha}$, s = 2 α +1

>
$$s = (r+2)/(r-1)$$

- > r = 4 for strong adiabatic shock: s = 2, $\alpha = 0.5$
- > r < 4 weak shock: s > 2, α > 0.5
- > r = 7 relativistic shock
 - s = 4/3, $\alpha = 0.167$ (Test particle)
 - Complicated (CR-dominated)
- r >> 4 cooling shock
 - but fast particles don't see this compression ratio

Astrophysics from the Radio to the Submillimetre, Bologna

SN 1006

VLA (Dyer et al 2009)

Chandra (NASA/CXC)

Astrophysics from the Radio to the Submillimetre, Bologna

SN 1006

- Shock front Radio-X-ray:
 - > $\alpha = 0.50 \pm 0.02$
 - > Decourchelle et al (2011)
- X-ray synchrotron $\alpha = 1.5$
 - Cutoff in spectrum just below X-ray band
 - Highest-energy electrons ~ 100 TeV
- Thin shock suggests r > 4
- Barrel shape:
 - Efficient acceleration at parallel shocks?
 - Contrary to Bell model!
 - SN1006 has radial B-field

Complexities

- Significant variation in SNR spectral indices
- Pulsar Wind nebulae flatter, e.g. Crab $\alpha = 0.3$
- Balance between steepening spectrum of old material and injection of new material:
 - Young SNR (+radio SN) have steeper spectra.

Propagation effects

- Ambient spectrum of CRs in ISM is steady state between injection & loss
 - radiative, diffusive, convective
- Direct measurement in good agreement with inferred spectrum from synchrotron emission (B ~ 6 μG)
- Detailed modelling suggests injection spectrum with several breaks, very hard at low frequency (s ~ 1.6)
- \rightarrow talk by Orlando.

- Jaffe et al 2011: E³ scaling
 GALPROP prediction fitted to synchrotron data vs local e⁻ spectrum.
- Astrophysics from the Radio to the Submillimetre, Bologna

Spectral Index: 13:7 mm

- Low sensitivity in WMAP data at λ < 1.3 cm gives limited sky coverage
- Note flat spectrum for Crab nebula
- Mean β_P ≈ −3.0
 - Slightly flatter than at lower frequencies. (-3.1 in same regions)
- Kogut et al (2007) claim detection of flattening from $\beta_P \approx -3.2$ to -3.0 from WMAP data alone...
 - > Use smoothing from 7° to 18°
 - No allowance for pol. bias at 23 GHz: artifact?

(3-year WMAP data)

Hazy thoughts

- Existence of "haze" conclusively demonstrated
 - > Gorski talk
- Interpretation:
 - > Two components, $\alpha = 0.5$ and $\alpha = 1$
 - Implicit in template method
 - Region with single unusual $\alpha = 0.7$
 - Very hard to distinguish without ultra-precise measurements
 - Illustration assumes 2% errors for WMAP/Planck, except at > 50 GHz
 - Actual errors dominated by residuals from other foregrounds

Spatial distribution of Synchrotron

- External galaxies show SR most intense in spiral arms
- (M51 extreme case)
- Highest fractional polarization in interarms
 - > Field more ordered

Copyright: MPIR. Bonn (R.Beck, C.Horellou & N.Neininger)

Astrophysics from the Radio to the Submillimetre, Bologna

3D Emission models

- Milky Way also has distinct radio spiral arms
- Consistent with arms in NE2001 model.
- Cosmic ray analysis suggests CRs very smoothly distributed
 - e.g. Fermi: outer galaxy
 ≈ constant density

Major variation in B-field Hammurabi code

- > Waelkens, Jaffe et al.
- > Sun et al (2008)
- > Jaffe et al (2010)

Fit:

- 408 MHz I
- 23 GHz p

NE2001 electron density contours

Tangled up in **B**

Hammurabi model:

B: 2 3 7 μG Jaffe et al (2010,2011)

• Yet another wrinkle:

Figure 1. The compression of a cube containing an initially random magnetic field.

 Laing (1980)
 Not included in Hammurabi model
 too poorly constrained

Astrophysics from the Radio to the Submillimetre, Bologna

Synchrotron Radiation is all around

- 408 MHz I + 23 GHz P
- Minimum intensity at mid latitudes
- Synchrotron monopole:
 - Cosec | b | fit to Haslam map: zero level = 9.8 K (N), 10.1 K (S)
 - But already zeroed to ±3
 K
 - Would give negative intensity at faintest points
 - cf ARCADE2
- Isotropic component!
 - Local bubble or halo?

The Synchrotron Sky

- On large scale mostly dominated by coherent structures
 - > Loops (local)
 - > Fan (c. 1 kpc)
 - > SNRs
- Not a lot of scope for meaningful statistical analysis
 - higher resolution needed!

Loops

Only Loop I and top half of Loop III clear

Astrophysics from the Radio to the Submillimetre, Bologna

NGP Polarization

- Polarization well organized across NGP
- Fractional polarization low outside Spur: ~ 10%
 - Complex structure along LOS
- Field in Spur follows outside field
 - > Bright rim effect?

Outlook

- Planck data will be complemented with new, high-precision surveys dramatically improving observational situation 1-20 GHz
 Much cleaner synch/free-free/AME separation
 New Faraday surveys @ ~ 1 GHz will dramatically improve Faraday modelling
 Still a lot of work to do on 'ordered' field
- Major puzzle understanding CR electron injection spectrum
 - Look to observations of other galaxies with new low-frequency arrays

Astrophysics from the Radio to the Submillimetre, Bologna