Cosmology and the LHC

New TeV scale physics

Cosmological signatures

mainly from

- dark matter
- baryogenesis

Géraldine SERVANT CERN-Th

2010: First collisions at the LHC

Direct exploration of the TeV scale has started

main physics goal:

What is the mechanism of Electroweak Symmetry breaking?

The Standard Model of Particle Physics

- one century to develop it
- tested with impressive precision
 - accounts for all data in experimental particle physics

The Higgs is the only remaining unobserved piece and a portal to new physics hidden sectors

The (adhoc) Higgs Mechanism

EW symmetry breaking is described by the condensation of a scalar field

The Higgs selects a vacuum state by developing a non zero background value. When it does so, it gives mass to SM particles it couples to.

the puzzle:

We do not know what makes the Higgs condensate. We ARRANGE the Higgs potential so that the Higgs condensates but this is just a parametrization that we are unable to explain dynamically.

Electroweak symmetry breaking: 2 main questions

What is unitarizing the W_LW_L scattering amplitude?

the Higgs or something else?

What is cancelling the divergent diagrams? $\rightarrow \delta M_{H}^2 \propto \Lambda^2$

(i.e what is keeping the Higgs light?) : Hierarchy problem

 Λ , the maximum mass scale that the theory describes

strong sensitivity on UV unknown physics

need new degrees of freedom & new symmetries to cancel the divergences

supersymmetry, gauge-Higgs unification, Higgs as a pseudo-goldstone boson...

 \rightarrow theoretical need for new physics at the TeV scale

(The naturalness scale of the Standard Model

Why is the Higgs boson light?

its mass parameter receives radiative corrections

$$\delta m_H^2 = \frac{3\Lambda^2}{8\pi^2 v^2} \left(2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2 \right) \sim -(0.23 \ \Lambda)^2 \tag{assuming the same } \Lambda \text{ for all terms}$$

 Λ , the maximum mass scale that the theory describes

strong sensitivity on UV unknown physics

 Λ =5 TeV -> cancellation between tree level and radiative contributions required by already 2 orders of magnitude

(The Minimal Supersymmetric Standard Model (MSSM)

Supersymmetry can solve the "big" hierarchy and naturalness is preserved up to very high scales if superparticle masses are at the weak scale

 $\underbrace{\overset{h^{0}}{\underset{y_{t}}{\overset{h^{0}}{\overset{y_{t}}{\overset{y}}{\overset{y_{t}}{\overset{y_{t}}}{\overset{y}}{\overset{y_{t}}}{\overset{y}}{\overset{y}}{\overset{y}}{\overset{$ $\delta m_H^2 \sim -\frac{3 h_t^2}{8 \pi^2} m_{\widetilde{t}}^2 \log \frac{\Lambda^2}{m_{\widetilde{t}}^2}$

The naturalness problem of the MSSM

The problem with the MSSM: we did not see the Higgs at LEP

status of msugra pre-LHC

[Giudice & Rattazzi, '06]

Addressing the hierarchy problem with a new symmetry

fermion

 $\Psi \to e^{i\theta\gamma_5} \Psi$

Ψ massless: protected by chiral symmetry

Ψ <---> H

vector

$$A_{\mu} \to A_{\mu} + \partial \theta$$

A_μ massless: protected by gauge invariance

In 5 dimensions: $H=A_5$

scalar

 $H \to H + \theta$

H massless: protected by a global symmetry

Which new physics?

Supersymmetric

Minimally extended (2 Higgs doublets)

Electroweak symmetry breaking

Higgsless, technicolor-like, 5-dimensional Composite, Higgs as pseudo-goldstone boson, H=A₅

In all explicit examples, without unwarranted cancellations, new phenomena are required at a scale Λ ~[3-5] × M_{Higgs}

Beyond the weakly coupled elementary supersymmetric Higgs boson paradigm:

The strongly coupled "Higgs": Composite Higgs or Higgsless (e.g. technicolor)

Assumption: there is a new strongly interacting sector at the Tev scale responsible for EW symmetry breaking.

if replica of QCD at the TeV scale, Higgs= $\langle Q'\overline{Q'} \rangle$ condensate

-> no light scalar playing the role of the higgs: Higgsless ->main objection: conflict with e lectroweak precision tests -> a solution: a composite light higgs arising as a pseudogoldstone boson The Higgs as a kind of pion from a new strong sector?

Quantum numbers of the Goldstones fixed by the symmetry breaking pattern in the strong sector: G-> H Higgs scalars as pseudo-Nambu-Goldstone bosons of new dynamics above the weak scale

New strong sector endowed with a global symmetry G spontaneously broken to H \rightarrow delivers a set of Nambu Goldstone bosons

Extra-Dimensional point of view: Warped Geometry

Space-time is a slice of AdS_5

Radius stabilisation using bulk scalar (Goldberger-Wise mechanism)

Like in QCD, spectrum of resonances (Kaluza-Klein states)

 Most natural DM candidate: The lightest Technibaryon can be stable by TechniBaryon Number conservation (as baryons in QCD). The Hierarchy Problem has been the guideline of theorists for over 30 years

The main goal of the LHC:

Understand why MEW << MPlanck

We are at a turning point. Within the next few years, we will know what is lying behind the EW scale. Imagine what our universe would look like if electroweak symmetry was not broken

- quarks and leptons would be massless

- mass of proton and neutron (the strong force confines quarks into hadrons) would be a little changed

- proton becomes heavier than neutron (due to its electrostatic self energy) ! no more stable

-> no hydrogen atom

-> very different primordial nucleosynthesis

-> a profoundly different (and terribly boring) universe

Does a Higgs boson exist ?

If yes :

Is there only one ?

what are its mass, width, quantum numbers?

what are its couplings to itself and other particles

- Spin determination
- CP properties

🕅 does it generate EW symmetry breaking and give mass to

fermions too as in the Standard Model or is something else needed?

If not, be ready for

- very tough searches at the (S)LHC (VLVL scattering, ...) or
- more spectacular phenomena such as W', Z' (KK) resonances, technicolor, etc...

Searches for other new particles: Do they play any role in EW symmetry breaking?

So far, everything amazingly consistent with the Standard Model

Exploration of the TeV scale territory definitely underway

		ATLAS Exotics Searches* - 95% CL Lower Limits (Status: Dec. 2011)
	Large ED (ADD) : monoiet	$L = 0.45^{-1} (2014) LATLAS CONF 2014 (2051) = 2.2 TeV M (\delta - 2)$
Extra dimensions	Large ED (ADD) : diphoton	$\frac{1}{3.2} \frac{1}{10} $
	UFD : wy + F	L=2.1 to (2011) [Preliminary] 3.0 lev M _S (CRW Cutoff) ATLAC Preliminary Openant code (2012) Preliminary
	BS with $k/M_{\rm eff} = 0.1$ vy ee uu combined m	L=1.1 fb (2011) [arXiv:1111.4116] 1.23 TeV Compact. Scale 1/R (SPS8)
	$PS with k/M = 0.1 : 77 recommends, m_{\gamma\gamma, \parallel}$	$\int L = 1.1 - 2.1 \text{ fb}^{-1} (2011) [Preliminary, arXiv:1108.1582] = 1.95 \text{ TeV} Graviton mass = \int L dt = (0.03 - 2.1) \text{ fb}^{-1}$
	RS with $R/M_{\text{Pl}} = 0.1 \pm 22$ resonance, m_{llll}	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-144] 575 GeV Graviton mass
	$\frac{1}{qqgKK} s = 0.20 \cdot H_T + L_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-123] 840 GeV KK gluon mass I's = 7 TeV
	Quantum black hole (QBH) : m_{dijet} , $F(\chi)$	L=36 pb ⁻¹ (2010) [arXiv:1103.3864] 3.67 TeV M_D (δ =6)
	QBH : High-mass σ_{t+X}	L=33 pb ⁻¹ (2010) [ATLAS-CONF-2011-070] 2.35 TeV M _D
	ADD BH ($M_{TH}/M_{D}=3$) : multijet, Σp_{T} , N_{jets}	L=35 pb ⁻¹ (2010) [ATLAS-CONF-2011-068] 1.37 TeV $M_{\rm D}$ (δ =6)
	ADD BH ($M_{TH}/M_{D}=3$) : SS dimuon, $N_{ch. part.}$	<i>L</i> =1.3 fb ⁻¹ (2011) [arXiv:1111.0080] 1.25 TeV M_D (δ =6)
	ADD BH ($M_{TH}/M_{D}=3$) : leptons + jets, Σp_{T}	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-147] 1.5 TeV M_D (δ =6)
5	qqqq contact interaction : $F_{\chi}(m_{dijet})$	L=36 pb ⁻¹ (2010) [arXiv:1103.3864 (Bayesian limit)] 6.7 TeV Λ
	qqll contact interaction : ee, $\mu\mu$ combined, m_{μ}	L=1.1-1.2 fb ⁻¹ (2011) [Preliminary] 10.2 TeV Λ (CONStructive int.)
~	SSM : m _{ee/µµ}	L=1.1-1.2 fb ⁻¹ (2011) [arXiv:1108.1582] 1.83 TeV Z' mass
_	$SSM: m_{T,e/\mu}$	L=1.0 fb ⁻¹ (2011) [arXiv:1108.1316] 2.15 TeV W' MASS
ЮŢ	Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ (2011) [Preliminary] 660 GeV 1 st gen. LQ mass
	Scalar LQ pairs (β =1) : kin. vars. in µµjj, µvjj	L=35 pb ⁻¹ (2010) [arXiv:1104.4481] 422 GeV 2 nd gen. LQ mass
4-th gen	4 th generation : coll. mass in Q $\overline{Q}_{4} \rightarrow WqWq$	L=37 pb ⁻¹ (2010) [CONF-2011-022] 270 GeV Q, mass
	4 th generation : d $\overline{d}_4 \rightarrow WtWt$ (2-lep SS)	L=34 pb ⁻¹ (2010) [1108.0366] 290 GeV d, mass
	$TT_{ave 4th con} \rightarrow tt + A_0A_0 : 1-lep + jets + E_T$ mice	$L=1.0$ fb ⁻¹ (2011) [arXiv:1109.4725] 420 GeV T mass ($m(A_{-}) < 140$ GeV)
	Techni-hadrons : dilepton, mee/uu	$L = 1.1.1.2 \text{ fb}^{-1}(2011) \text{ [CONF-2011-125]}$ 470 GeV ρ /ω_{T} mass $(m(\rho /\omega_{T}) - m(\pi_{T}) = 100 \text{ GeV})$
Other	Major. neutr. (LRSM, no mixing) : 2-lep + jets	$L=34 \text{ pb}^{-1}$ (2010) [ATLAS-CONF-2011-115] 780 GeV N mass ($m(W_{p}) = 1 \text{ TeV}$)
	Maior. neutr. (LRSM. no mixing) : 2-lep + iets	$L=34 \text{ pb}^{-1}$ (2010) [ATLAS-CONF-2011-115] 1.350 TeV W _D mass (230 < $m(N)$ < 700 GeV)
	$H_{L}^{\pm\pm}$ (DY prod., BR($H^{\pm\pm}\rightarrow\mu\mu$)=1) : m	L=1.6 fb ⁻¹ (2011) ICONF-2011-1271 375 GeV H ^{±±} mass
	Excited quarks : γ -jet resonance, m	$I = 2.1 \text{ fb}^{-1}(2011)$ [Preliminary] 246 TeV 0* mass
	Excited quarks : dijet resonance, m_{dijet}	
	Axialuons : $m_{\rm arg}$	
	Color octet scalar : m	
	Vector-like quark : CC. m	
	Vector-like quark : NC_m	$\frac{1}{2} = \frac{1}{2} $
		10^{-1} 1 10 10
		Mass scale [TeV]

*Only a selection of the available results leading to mass limits shown

Searches for SUSY at CMS

not yet any sign of new physics, despite extensive effort

- Many extensions of the SM have been developed over the past decades:
- Supersymmetry
- Extra-Dimensions
- Technicolor(s)
- Little Higgs
- No Higgs
- GUT
- Hidden Valley
- Leptoquarks
- Compositeness
- 4th generation (t', b')
- LRSM, heavy neutrino⁴
- etc...

(for illustration only)

1 jet + MET jets + MET 1 lepton + MET Same-sign di-lepton **Dilepton resonance** Diphoton resonance Diphoton + MET Multileptons Lepton-jet resonance Lepton-photon resonance Gamma-jet resonance Diboson resonance Z+MET W/Z+Gamma resonance Top-antitop resonance Slow-moving particles Long-lived particles Top-antitop production Lepton-Jets Microscopic blackholes **Dijet resonance** etc...

Higgs hunting

SM Higgs excluded in the 129-525 GeV mass range @ 99% CL

Hints for the Higgs

or

124 GeV

126 GeV ?

Cosmological implications of Standard Model

Higgs mass measurement

Espinosa-Giudice-Riotto'07

(assuming a desert between the EW scale and the scale of inflation)

--> No bound on the reheat temperature if M_H ~ 125 GeV

relevant for leptogenesis

LHC will most likely not provide the final answer

Searching for complementary probes of the EW symmetry breaking mechanism in cosmological observables

New TeV scale physics

Cosmological signatures

mainly from

dark matterbaryogenesis

(see also recent interest in higgs inflation)

2 major observations unexplained by the Standard Model

that may have something to do with new physics at the electroweak scale

• the Dark Matter of the Universe

Some invisible transparent matter (that does not interact with photons) which presence is deduced through its gravitational effects

15% baryonic matter (1% in stars, 14% in gas)

85% dark unknown matter

the (quasi) absence of antimatter in the universe

baryon asymmetry: $\frac{n_B - n_B^{-10}}{n_B + n_B^{-10}} \sim 10^{-10}$

Why can't dark matter be explained by the Standard Model?

leptons

Dark Matter candidates

Two main possibilities:

very light & only gravitationally coupled (or with equivalently suppressed couplings) -> stable on cosmological scales

Long-lived (stable on cosmological scales)

 $\tau_{DM} > \tau_{universe} \sim 10^{18} \ s$

sizably interacting (but not strongly) with the SM -> symmetry needed to guarantee stability

stable by a symmetry

-> WIMP

The WIMP relic abundance follows from t $\dot{n} + 3Hn = -\langle \sigma \sigma \rangle$ thermal freeze-out mechanism in the expanding universe

 \rightarrow a particle with a typical EW-scale cross section

 $\sigma_{anni} \approx 1$ pb leads to the correct dark matter abundance.

Dark Matter Candidates with Ω_{DM} ~1

What is the nature of the electroweak phase transition ?

first-order or second-order?

LHC will provide insight as it will shed light on the Higgs sector

Question intensively studied within the Minimal Supersymmetric Standard Model (MSSM). However, not so beyond the MSSM (gauge-higgs unification in extra dimensions, composite Higgs, Little Higgs, Higgsless...)

Why do we care?

1) Nature and properties of the EW phase transition reflect information on the dynamics behind EW symmetry breaking (e.g weakly or strongly interacting).

2) Crucial for reliable computations of electroweak baryogenesis

Besides, out -of-equilibrium dynamics during the EW phase transition may be relevant for non-thermal dark matter production

Baryon asymmetry and the EW scale

1) nucleation and expansion of bubbles of broken phase

broken phase

 $\langle \Phi \rangle \neq 0$

Baryon number

is frozen

 CP violation at phase interface responsible for mechanism of charge separation

Chirality Flux in front of the wall 3) In symmetric phase, <Φ>=0,
very active sphalerons convert chiral asymmetry into baryon asymmetry

Electroweak baryogenesis mechanism relies on a first-order phase transition In the SM, a 1rst-order phase transition can occur due to thermally generated cubic Higgs interactions:

 $V(\phi,T) \approx \frac{1}{2}(-\mu_h^2 + cT^2)\phi^2 + \frac{\lambda}{4}\phi^4\left(-ET\phi^3\right)$ $-ET\phi^3 \subset -rac{T}{12\pi}\sum_i m_i^3(\phi)$ Sum over all bosons which couple to the Higgs

In the SM: $\sum_{i} \simeq \sum_{W,Z} \implies$ not enough for mh>72 GeV, no 1st order phase transition

In the MSSM: new bosonic degrees of freedom with large coupling to the Higgs Main effect due to the stop

Effective field theory approach

add a non-renormalizable Φ^6 term to the SM Higgs potential and allow a negative quartic coupling

 $V(\Phi) = \mu_h^2 |\Phi|^2 - \lambda |\Phi|^4 + \frac{|\Phi|^6}{\Lambda^2}$

"strength" of the transition does not rely on the one-loop thermally generated negative self cubic Higgs coupling

Smoking gun signature

Randall-Servant'06 Konstandin,Nardini,Quiros'10 Konstandin-Servant'11

Detection of a GW stochastic background peaked in the milliHertz: a signature of near conformal dynamics et the TeV scale

Typically large deviations to the Higgs self-couplings

where

 $\mathcal{L} = \frac{m_H^2}{2}H^2 + \frac{\mu}{3!}H^3 + \frac{\eta}{4!}H^4 + \dots$

at a Hadron Collider

 $\mu = 3 \frac{m_H^2}{---} +$ 6 v_0 $\eta = 3 \frac{m_H^2}{v_0^2} + 36$

The dotted lines delimit the region for a strong 1rst order phase transition

deviations between a factor 0.7 and 2

Testing the WIMP paradigm

Producing Dark Matter at LHC = "Missing Energy" events

Event rate

 $L \sim 10^{33} \text{ cm}^{-2} \text{s}^{-1} \sim 10 \text{ fb}^{-1} \text{ year}^{-1}$

 $\sigma \sim O(10) \text{ pb} \longrightarrow \sim 10^5 \text{ wimps/year}$

Detecting large missing energy events will not be enough to prove that we have produced dark matter (with lifetime > H⁻¹~10¹⁷ s) LHC: not sufficient to provide all answers

LHC sees missing energy events and measures mass for new particles

but what is the underlying theory? Spins are difficult to measure (need for $e^+ e^-$ Linear Collider)

Solving the Dark Matter problem requires

1) detecting dark matter in the galaxy (from its annihilation products)

2) studying its properties in the laboratory

3) being able to make the connection between the two

Need complementarity of particle astrophysics (direct/indirect experiments) to identify the nature of the Dark Matter particle

The Dark Matter Decade

Higgs in Space!

 γ -ray lines from the Galactic Center $\Delta \Omega$ = 10⁻⁵ sr

beyond the standard WIMP paradigm ...

Are the Dark Matter

and baryon abundances related?

ΩDM≈ 5-6 Ωbaryons

Similarly, Dark Matter may be asymmetric

 $\frac{\Omega_{dm}}{\Omega_b}\sim 5 \qquad \begin{array}{c} \text{Does this indicate a common dynamics?}\\ n_{dm}-\overline{n}_{dm}\propto n_b-\overline{n}_b \end{array}$

If
$$n_{dm}-\overline{n}_{dm}\propto n_b-\overline{n}_b$$

''dm

 $- udm \neq$

 $\begin{array}{ll} \mbox{then} & \frac{\Omega_{dm}}{\Omega_b} \sim \frac{(n_{dm} - \overline{n}_{dm})m_{dm}}{(n_b - \overline{n}_b)m_b} \sim C \frac{m_{dm}}{m_b} \\ \frac{\Omega_{dm}}{\Omega_b} & \frac{(n_{dm} - \overline{n}_{dm})m_{dm}}{(n_{bm} - \overline{n}_{dm})m_{dm}} \sim C \frac{m_{dm}}{m_b} \\ \frac{\Omega_{dm}}{\Omega_b} & \frac{(n_{dm} - \overline{n}_{dm})m_{dm}}{(n_b - \overline{n}_b)m_b} \sim C \frac{m_{dm}}{n_b} Q_b(n_b - n_{\overline{b}}) \\ \mbox{if efficient} & \frac{\Omega_{dm}}{\Omega_b} \sim \frac{Q_b}{Q_{dm}} \frac{m_{dm}}{m_b} \longrightarrow \\ \mbox{typical expected} \\ \mbox{mass} \sim GeV \end{array}$

two possibilities:

 asymmetries in baryons and in DM generated simultaneously
 a pre-existing asymmetry (either in DM or in baryons) is transferred between the two sectors

Collider constraints

Fox-Harnik-Kopp-Tsai '11

Use ATLAS and CMS searches in the mono-jet + missing E_T final state

Set limits on couplings of DM to SM in Effective Field Theory Approach

Convert these limits into bounds on cross sections relevant for direct and indirect detection

For certain types of operators: competitive limits!

ATLAS 7 TeV constraints on annihilation cross section

Fox-Harnik-Kopp-Tsai '11

Thermal relic cross sections ruled out for m_DM<~15 GeV for vector couplings ! m_DM<~70 GeV for axial couplings !

Collider constraints on nucleon-WIMP scattering cross section

Fox-Harnik-Kopp-Tsai '11

Low mass LHC reach complementary to direct detection experiments!

no astrophysical uncertainties

Dark Matter and the CMB

Accurate measurements of the CMB have the potential to probe the physics of dark matter beyond its gravitational interactions

If DM is a thermal relic whose relic abundance is determined by its annihilation rate in the early universe, it modifies the ionization history of the universe and has a potentially measurable effect on the CMB

These constraints are independent of the DM distribution and galactic astrophysics in constrast with other indirect constraints and only depend on:

 Ω_{DM} , m_DM , σ_0 and standard physics of recombination

Constraints from CMB measurements on the DM annihilation cross section

f is just the efficiency with which the WIMP rest mass energy liberated by annihilation is injected into the $\,\rm IGM$

Slatyer, Padmanabhan, Finkbeiner '09

Galli et al, '09,'11

CMB versus Fermi constraints

Opening the window for Asymmetric Dark Matter due to DM anti-DM oscillations

Conclusion

Dark Matter & Baryogenesis at the Electroweak scale:

both under testing !

Planck has its word to say on weak scale physics! as it can provide interesting constraints on models of WIMP annihilating dark matter