High energy aspects of SNRs

10 years old

10 years old

4 years old

Aya Bamba (ISAS/JAXA, Japan)

How to search for cosmic ray accelerators?

Combination of X-ray and gamma-ray is important !

Observational clues of CR acceleration at SNRs

synchrotron X-ray

TeV gamma-ray

Discovered by ASCA (Koyama+95) Discovered by HESS (Aharonian+04)

Shocks of SNRs accelerate cosmic rays !

Remaining problems in the 20th century (Contents of this talk)

- 1. Estimating acceleration efficiency How efficiently can shocks accelerate cosmic rays ? Can SNRs be the main contributor of CR acceleration?
- 2. Estimating Maximum energy Can we expect the E_{max} of accelerated particles ? Is it larger/smaller than the knee energy ?
- 3. Can we discover proton accelerators ? The main goal of cosmic ray physics in 100 years. Not yet, but we are finding some clue. It should be the golden age now to study cosmic rays !

1. Estimating acceleration efficiency

1. Acceleration is really efficient ??

before Chandra/XMM

No observational information on the acc. efficiency many theories used "test particle" ignoring energy of accelerated particles

Chandra/XMM Discovery of very thin filaments with synchrotron X-rays !!

thin = small gyro radius small diffusion

-> amplified and turbulent B efficient acceleration

Young SNRs have thin filaments with sync. X-rays

RCW 86

thin filaments are common in young SNRs efficient acceleration might be common.

(Bamba+05)

Direct evidence of rapid acceleration ?? year-scale time variability of filaments in RXJ1713-3946

synchrotron loss ~ 1yr -> B >= 1mG !!
acc. time-scale ~ 1yr -> very very efficient !!

Very low kT plasma behind the shock

Helder+09: NE rim of RCW86 measured shock velocity using Chandra observations $-> V_{shock} \sim 6000 \text{ km/s}$ -> expected temperature: 40-70 keVmeasured kT with H-alpha observations -> kT = 2.3 keV

"disappeared E" to the acceleration ?

efficiency: > 50 % !!

1st conclusion: Several observations imply very efficient acceleration

2. Estimating Maximum energy

How to search for efficient acceleration ? synchrotron X-rays have cut-off

electron distribution

cutoff energy ~ $B E_{max}^{2}$ (Reynolds 1998) B: magnetic field E_{max} : the maxmimum E of e

good statistics in wide band is essential

Suzaku observations of SNRs

Suzaku has sensitivity in wide band and detected synchrotron X-rays from several SNRs

CTB37B (Nakamura et al. 2009)

cut-off energy determined by Suzaku

3. Possible proton accelerators

How to search for p accelerators?

X-ray obs. cannot see protons. Gamma-ray obs. cannot distinguish e and p.

We need both observations. Do we have sources with only TeV gamma-rays?

In a young SNR case: RX J1713-3946

Complete maps in X-ray and TeV bands. TeV and X-ray flux have some correlation. some special region ? -> B amplification? (Tanaka+09) simple correlation? -> sync. from uniform B ? (Acero+-09)

Radial profiles

The X-ray emission seems to come more from the inside of the SNR than in gamma-rays

X-rays: synchrotron from the shock ?? X-ra gamma-rays: via pi-0 decay on the shock-molecular cloud interaction ?

X-ray gamma-ray

still contravatial ...

TeV-bright and X-ray faint sources ?

HESS discovered a lot of new sources on the Galactic plane

Suzaku follow-ups of several TeV unID sources

HESSJ 1616-508 (Matsumoto+07)

upper-limit ! $F_{TeV}/F_X > 55$

HESS J1702-420 (Fujinaga+ in prep.)

$$F_{TeV}/F_X > 32$$

unID compact sources $F_{TeV}/F_X > 13$ TeV 2032+4130 (Murakami+ poster) detected: F_{TeV}/F_X ~ 10

Real dark particle accelerators ? Origin is still unknown

Suzaku XIS image of HESS J1745-303 (1)

Suzaku XIS image of HESS J1745-303 (2)

	•		•	1				•	•	
0	2E-05	+ E-05	6E-05	8E-05	0.0001	0.00012	0.0001+	0.00016	0.00018	

Suzaku XIS image of HESS J1745-303 (3)

Origin of neutral iron emission line? "X-ray reflection nebula"

X-ray irradiation -> scattered in MC -> strong emission line from cold iron

X-ray irradiator: past active GC SMBH itself ! (Koyama+ 2007) It was very bright 300 years ago.

SgrB2: Murakami+ 2002)

HESS J1745-303 coincides with MC.

SNR + MC = HESS J1745-303 as a proton accelerator ?

Our scenario

- The SNR G359.1-0.5 is old enough to lose sync. X-rays.

(Bamba+00)

- This SNR collides with MC. It has OH mesars.
- Protons emit gamma-rays via pi-0 decay.
- Only TeV gamma-rays are observed.

They should bright in GeV gamma-rays !

-> Fermi !!!

Fermi detected TeV unIDs !

Fermi bright source catalog (Abdo+09)

9 of 205 sources coincide with TeV sources 4 % of the Fermi bright sources !!

HESS J1023-575 HESS J1418-609 HESS J1616-508 HESS J1741-302 unknown HESS J1804-216 HESS J1813-178 HESS J1834-087 HESS J1923+141 TeV J2032+4230

dark with Suzaku dark with Suzaku PWN **PWN** unknown

Two dark accelerators are bright in GeV

HESS J1616-508 case

HESS J1804-216 case

Origin of the gap?

Proton accelerators ?? large GeV bump -> pion decay !? long awaited answer ! photon index is too soft (2.3-2.7) -> it is very difficult for CRs due to the softening during propagation ...

X-ray emitters are already moved/disappeared ? X-rays are from more energetic electrons than GeV/TeV gamma-rays -> shorter time scale ! PWN/pulsars ? Difficult to prove it ...

Anyhow, making the energy gap of observations smaller is crucial

Hard X-rays will cover (partly) the gap

Summary

Chandra revealed us that SNRs accelerate CRs very efficiently.

Suzaku showed us that the E_{max} is ~10-100 TeV. Protons should be accelerated more.

 Wide-band images with XMM/Suzaku show us some clue of p acceleration.
 Several TeV unID sources could be p accelerators.

The most interesting sources are much brighter in higher energies. We are waiting for New high-E mission, ASTRO-H, NuStar, and more !