PULSARS & DOUBLE PULSARS: A MULTIWAVELENGTH APPROACH

MARTA BURGAY - INAF, CAGLIARI DBSERVATORY

X-RAY ASTRONOMY 2009

BOLOGNA 08/09/2009

SPIN-POWERED PULSARS

A MULTIWAVELENGTH APPROACH

✓ UNDERSTANDING THE NATURE OF THE ENGINE OF PULSARS

PULSAR ELECTRODYNAMICS

PULSAR ELECTRODYNAMICS

A MULTIWAVELENGTH APPROACH

✓ UNDERSTANDING THE NATURE OF THE ENGINE OF PULSARS

✓ CLARIFYING THE REAL NATURE OF PECULIAR SIGNALS

PECULIAR SIGNALS: RRATS

♦ Repeating Single dispersed Pulses in Parkes Pulsar Surveys Data

REPEATING RADIO TRANSIENTS

♦ UNDERLYING PERIODICITY FOUND THROUGH TIME DIFFERENCE STUDIES

♦ PERSISTENT PULSATION FOUND FROM X-RAY OBSERVATIONS

ROTATING RADIO TRANSIENTS!

♦ POPULATION STUDIES INCLUDING RADIO SURVEYS SELECTION EFFECTS

4 TIMES MORE RRATS THAN PERSISTENT PULSARS

A MULTIWAVELENGTH APPROACH

Understanding the nature of the engine of Pulsars
Clarifying the real nature of peculiar signals

✓ ESTABLISHING A LINK BETWEEN DIFFERENT CLASSES OF NSS

THE NSS CONNECTIONS

- HIGH ENERGY
- RRATS
- MAGNETARS
- O XDINS

X-RAY OBSERVATIONS OF RRATS RADIO OBSERVATIONS OF XDINS RADIO OBSERVATONS OF MAGNETARS ...

A MULTIWAVELENGTH APPROACH

Understanding the nature of the engine of Pulsars
Clarifying the real nature of peculiar signals
Establishing a link between different classes of NSs

✓ HAVING A COMPLETE PICTURE OF SPECIFIC OBJECTS OF INTEREST

OPTICAL

D RADI

OPTICAL

ED —

· · · ·

THE DOUBLE PULSAR J0737-3039A

22.7 MS PULSAR IN THE PARKES

HIGH-LATITUDE SURVEY

2.4 HR ORBIT AROUND A SECOND NS

THE MOST RELATIVISTIC DNS KNOWN

ALLOWING FOR PRECISE TESTS OF GR

Burgay et al. 2003 Nature Kramer et al. 2006 Science

THE DOUBLE PULSAR J0737-30398

DISCOVERY OF 2.7 S PULSATIONS FROM COMPANION NS UNIQUE SYSTEM ALLOWING FOR NEW GR TESTS MUTUAL INTERACTIONS BETWEEN RADIO

BEAMS AND MAGNETOSPHERES

Breton et al. 2008 Science

THE DOUBLE PULSAR

THE BALANCING POINT BETWEEN PRESSURES INSIDE B'S MAGNETOSPHERE

Shock emission expected: X/γ -rays from synchrotron (+inverse compton)

THE DOUBLE PULSAR IN X-RAYS

X-RAY OBSERVATIONS :

- CHANDRA ACIS-S, 10.0 KS: 64 COUNTS, SPATIAL ANALYSIS (McLaughlin et al 2004, Campana et al. 2004)
- XMM MOS-1+2 47.2 KS: 432 CTS SPECTRAL AND TIMING ANALYSIS (Campana et al. 2004, Pellizzoni et al. 2004, Kargalstev et al. 2006)

• CHANDRA HRC-S 53.5 KS: 250 CTS, SPATIAL AND TIMING ANALYSIS (Chatterjee et al. 2007)

- CHANDRA HRC-S 35.8 KS: 167 CTS, SPATIAL AND TIMING ANALYSIS (Chatterjee et al. 2007)
- CHANDRA ACIS-S 79 KS: 529 CTS, SPATIAL, SPECTRAL AND TIMING ANALYSIS (Possenti et al. 2008)

• XMM MOS+PN 230 KS: 5000 CTS, SPATIAL, SPECTRAL AND TIMING ANALYSIS (Pellizzoni et al. 2008)

THE DOUBLE PULSAR IN X-RAYS: TIMING

Pulsations found at A's period Double peaked Pf ~ 75%

McLaughlin et al 2004, Campana et al. 2004, Pellizzoni et al. 2004, Chatterjee et al. 2007, Possenti et al. 2008, Pellizzoni et al. 2008

THE DOUBLE PULSAR IN X-RAYS: TIMING

PULSATIONS FOUND AT B'S PERIOD IN

0.41 - 0.66 ORBITAL PHASE

Pellizzoni et al. 2008

PL (OR BB+PL) OR BB+BB EQUALLY OK Standard Emission from A Quite Soft

230 KS XMM: PHASE AVERAGED: PL+BB OR BB+BB PHASE & ENERGY RESOLVED SPECTRA: ♦ OFF-PULSE SOFTER ♦ PF INCREASES WITH ENERGY

400 Pellizzoni et al 2008 300 Counts 200 100 в С 0.4 0.2 lardness ratio 0.0 -0.2 -0.4 -0.6 -0.8 0.0 0.5 1.0 1.5 2.0 Phase

OFF PULSE: SHOCK? PULSAR B?

PL (OR BB+PL) OR BB+BB EQUALLY OK Standard Emission from A Quite Soft

230 KS XMM: PHASE AVERAGED: PL+BB OR BB+BB PHASE & ENERGY RESOLVED SPECTRA: \diamond OFF-PULSE SOFTER \diamond PF INCREASES WITH ENERGY

OFF PULSE: SHOCK? PULSAR B?

OFF PULSE: NOT SHOCK. PULSAR B!

THREE COMPONENT SPECTRAL MODEL: POWER LAW (Γ =3.3) \rightarrow PSR A PULSED ("HOT" BB (134 EV, 100 M) \rightarrow PSR A "COLD" BB (32 EV, 15 KM) \rightarrow PSR B

DELAY BETWEEN RADIO AND X-RAY EMISSION PHASES CAN CONSTRAN THERMAL INERTIA OF NS SURFACE

SUMMARY

MULTIWAVELENGTH OBSERVATIONS ARE FUNDAMENTAL TOOLS FOR:

 \diamond have a deeper knowledge of the pulsar emission mechanisms

 \diamond Understand possible connections between classes of NSs

 \diamond Have a better undesrtanding of peculiar objects such as

 \diamond RRATS (NSS POPULATION)

 \diamond . . .

 \diamond The Double Pulsar (emission mechanisms, plasma physics...)

THANKS