A self-consistent approach to the reflection component in NS LMXBs

Antonino D'Aí T. Di Salvo, R. Iaria, N.R. Robba, A.Papitto, D. Ballantyne

Dipartimento di Scienze Fisiche ed Astronomiche Università di Palermo

Bologna 11 dicembre 2009

• • • • • • • • • • • •

The Z-source GX 340+0

The atoll source 4U 1705-44

A reflection model for NS LMXBs: refbb

6 Reflection in hard state

6 Conclusions

< □ > < □ > < □ > < □ > < </p>

э

The Z-source GX 340+0 The atoll source 4U 1705-44 A reflection model for NS LMXBs: refbb Reflection in hard state Conclusions

Spectral decomposition in LMXBs

Emission processes and geometry

- Z-sources: always very soft spectra
- Atoll sources: banana and island states
- Soft component (below 3 keV)
 → SS disk
- Hard component (3-10 keV) → Comptonization in corona (boundary layer)
- Hard tails (above 20 keV) → emission from outflows or jets (open)
- Broad lines → Reflection component

• • • • • • • • • • • •

The Z-source GX 340+0 The atoll source 4U 1705-44 A reflection model for NS LMXBs: refbb Reflection in hard state Conclusions

Spectral decomposition in LMXBs

Emission processes and geometry

- Z-sources: always very soft spectra
- Atoll sources: banana and island states
- Soft component (below 3 keV)
 → SS disk
- Hard component (3-10 keV) → Comptonization in corona (boundary layer)
- Hard tails (above 20 keV) → emission from outflows or jets (open)
- Broad lines → Reflection component

The Z-source GX 340+0 The atoll source 4U 1705-44 A reflection model for NS LMXBs: refbb Reflection in hard state Conclusions

Relativistic lines in LMXBs I

Line Shape

- Inclination angle
- Disk inner radius
- Disk outer radius
- Emissivity law ($\epsilon(r) = r^{-q}$)

Reference

Fabian et al., 2002, MNRAS XMM data

イロト イ団ト イヨト イヨト

Antonino D'Aì

The Z-source GX 340+0 The atoll source 4U 1705-44 A reflection model for NS LMXBs: refbb Reflection in hard state Conclusions

Relativistic line in LMXBs II

Reference

NS LMXB: Ser X-1 Bhattacharyya et al., 2007, ApJ XMM data

Reference

NS LMXBs systems Cackett et al., 2008, ApJ Suzaku data

イロト イ団ト イヨト イヨト

The Z-source GX 340+0 The atoll source 4U 1705-44 A reflection model for NS LMXBs: refbb Reflection in hard state Conclusions

Relativistic line in LMXBs III

Reference

NS LMXB: SAX J1808.6-3658 Papitto et al., 2009, A&A XMM data

イロト イロト イヨト イヨト

Reference

NS LMXB: 4U 1636-56 Pandel et al., 2008, ApJ XMM data

The case GX 340+0: results

Spectral decomposition

Simple model phabs(diskbb+bb) Observed spectral variability:

- Disk temperatures: 1.5 2.3 keV
- BB temperature: 2.4 3.5 keV
- Broad irone line at 6.7 keV
- Other reflection signatures: Ca XIX line at 3.90 keV and absorption edge at 8.7 keV.

Reference

D'Aí A. et al., 2009, ApJL arXiv:0906.3716

Start Time 14345 13:19:54:419 Stop Time 14346 2:33:14:419

The case GX 340+0: results

Spectral decomposition

Simple model phabs(diskbb+bb) Observed spectral variability:

- Disk temperatures: 1.5 2.3 keV
- BB temperature: 2.4 3.5 keV
- Broad irone line at 6.7 keV
- Other reflection signatures: Ca XIX line at 3.90 keV and absorption edge at 8.7 keV.

Reference

D'Aí A. et al., 2009, ApJL arXiv:0906.3716

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The case GX 340+0: results

Diskline parameters

Line energy at 6.69 \pm 0.02 keV Inclination 34.6 \pm 1.3 Emissivity index 2.50 \pm 0.10 Inner disk radius 13 \pm 3 Rg Outer radius > 3000 Rg

Reference

D'Aí A. et al., 2009, ApJL arXiv:0906.3716

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The atoll source 4U 1705-44

Times of the observation

- XMM-Newton observed the atoll source 4U 1705-44 on two occasions:
- Low luminosity hard state (island state)
- High luminosity soft state (banana state)

The atoll source 4U 1705-44

Times of the observation

- XMM-Newton observed the atoll source 4U 1705-44 on two occasions:
- Low luminosity hard state (island state)
- High luminosity soft state (banana state)

The atoll source 4U 1705-44

Times of the observation

- XMM-Newton observed the atoll source 4U 1705-44 on two occasions:
- Low luminosity hard state (island state)
- High luminosity soft state (banana state)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

4U 1705-44: the soft state

Times of the observation

- Model phabs*(bb+ctt)
- Double-peaked structure of the iron line
- Multiple reflection signatures
- Fitting through disklines

Disklines parameters

Inclination 39 \pm 1 degrees Emissivity index 2.3 \pm 0.1 Inner disk radius 14 \pm 2 R_g Outer radius 3500 \pm 1000 R_g

Reference

Di Salvo, D'Aì et al., 2009, MNRAS arXiv:0904.3318

• • • • • • • • • • • •

4U 1705-44: the soft state

Times of the observation

- Model phabs*(bb+ctt)
- Double-peaked structure of the iron line
- Multiple reflection signatures
- Fitting through disklines

Disklines parameters

Inclination 39 \pm 1 degrees Emissivity index 2.3 \pm 0.1 Inner disk radius 14 \pm 2 R_g Outer radius 3500 \pm 1000 R_g

Energy (keV)

Reference

Di Salvo, D'Aì et al., 2009, MNRAS arXiv:0904.3318

4U 1705-44: the soft state

Times of the observation

- Model phabs*(bb+ctt)
- Double-peaked structure of the iron line
- Multiple reflection signatures
- Fitting through disklines

Disklines parameters

Inclination 39 \pm 1 degrees Emissivity index 2.3 \pm 0.1 Inner disk radius 14 \pm 2 R_g Outer radius 3500 \pm 1000 R_g

Reference

Di Salvo, D'Aì et al., 2009, MNRAS arXiv:0904.3318

• • • • • • • • • • • • •

4U 1705-44: the soft state

Times of the observation

- Model phabs*(bb+ctt)
- Double-peaked structure of the iron line
- Multiple reflection signatures
- Fitting through disklines

Disklines parameters

 $\begin{array}{l} \mbox{Inclination 39 } \pm \mbox{1 degrees} \\ \mbox{Emissivity index 2.3 } \pm \mbox{0.1} \\ \mbox{Inner disk radius 14 } \pm \mbox{2 } R_g \\ \mbox{Outer radius 3500 } \pm \mbox{1000 } R_g \end{array}$

Reference

Di Salvo, D'Aì et al., 2009, MNRAS arXiv:0904.3318

Need for a self-consistent reflection model

Why a reflection model?

- The high quality of the XMM-Newton spectra allow broad-band (0.5-12 keV) self-consistent reflection models to be tested
- This allows to better constrain:
 - the ionization structure of the disk reflecting skin
 - 2 the spectral shape of the ionizing incident flux
 - to weight the chemical abundance of iron/other metal
 - to self-consistenly evaluate the total energetic contribution in extrapolated bands

The refbb component

- Table model of reflection from an optically thick slab of costant density
- Model developed from the reflion code (Ross & Fabian, 1993; Ballantyne et al. 2004 on 4U 1820-30)
- Incident radiation a black-body spectrum
- Lines and edges from Fe, O, Si, Mg, N and C
- Variable iron abundance

The soft state of 4U 1705-44

1705 - Spectral parameters

- Disk temperature : 1.15 ± 0.03 keV
- BB temperature: 1.91 \pm 0.01 keV
- log ξ : 2.36 ± 0.07
- Luminosity \sim 1 \times 10³⁸ erg s⁻¹
- Fractional BB flux 60%
- Fractional diskbb flux 30%
- Fractional refbb flux 10%

How reflection reprocesses the incident radiation			
0.1-1.0 keV	1-10 keV	10-100 keV	
63 %	32 %	5 %	

1705 - refbb model

The soft state of 4U 1705-44

1705 - Spectral parameters

- Disk temperature : 1.15 \pm 0.03 keV
- BB temperature: 1.91 \pm 0.01 keV
- log ξ : 2.36 ± 0.07
- Luminosity $\sim 1 \times 10^{38} \mbox{ erg s}^{-1}$
- Fractional BB flux 60%
- Fractional diskbb flux 30%
- Fractional refbb flux 10%

How reflection reprocesses the incident radiation			
0.1-1.0 keV	1-10 keV	10-100 keV	
63 %	32 %	5 %	

From Soft to Hard State

- Model phabs*(BB+Comptt)
- BB kT : 0.30 \pm 0.04 keV
- kT_0 temperature: 0.55 \pm 0.02 keV
- kT_e temperature: 14.4 ± 0.2 keV
- τ: 5.5 (fixed)
- Luminosity: \sim 1% L_{Edd}
- BB frac. flux: 10%
- Comptt frac. flux 90%
- Gaussian line: 6.50 \pm 0.07 keV
- Gaussian σ 0.41 \pm 0.08 keV
- Gaussina EQW: 60 ± 25 eV

< (17) × <

From Soft to Hard State

- Model phabs*(BB+Comptt)
- BB kT : 0.30 \pm 0.04 keV
- kT_0 temperature: 0.55 \pm 0.02 keV
- kT_e temperature: 14.4 ± 0.2 keV
- τ: 5.5 (fixed)
- Luminosity: \sim 1% L_{Edd}
- BB frac. flux: 10%
- Comptt frac. flux 90%
- $\bullet~$ Gaussian line: 6.50 $\pm~$ 0.07 keV
- Gaussian σ 0.41 \pm 0.08 keV
- Gaussina EQW: 60 \pm 25 eV

Buried thermal disk emission?

The soft state model

- Model phabs*(diskBB+Comptt+rdblur*refbb)
- Disk inner radius at ~ 10 R_g
- Blurred reflection (using constraints from the soft state)
- Thermal Comptonization

Results

- R_{in} Reflection < 90 Rg (90 % c.l.)
- kT_{IONIZING} 1.8±0.2 keV
- But flux ratio inconsistent...

Energy (keV)

VeV (

How far can be the disk truncated?

The soft state model

- Disk inner radius constrained at 30 R_g
- Blurred Reflection (using constraints from the soft state)
- log ξ : < 1.6</p>

Results

- R_{in} Reflection fixed at 30 R_g.
- kT_{IONIZING} 1.6±0.3 keV
- Diskbb flux can be very low.

Conclusions & Future Prospects

Talk Highlights

- Broad reflection features are an unvaluable tool to have direct insight on the accretion mechanism and inner geometry of NS LMXBs.
- Our self-consistent approach shows that the thermal boundary layer emission *is* the direct source of the photo-ionizing flux on the accretion disk.
- This approach allows for a correct broadband interpretation of the overall X-ray emission in Z-sources and in the soft state of atolls.
- In atoll hard states, broad iron lines are not unambigously resolved and require additional insight. Reflection can be still at work with a disk truncated at some R_{NS}.