

Matthias Ehle

ESA/ESAC, XMM-Newton Science Operations Centre

In collaboration with:

M. Weżgowiec^{1,2}, R.-J. Dettmar¹, B. Vollmer³, M. Soida², K.T. Chyży², M. Urbanik², J. Braine⁴, D. Bomans¹, R. Beck⁵, W. Pietsch⁶

¹Astron. Institut, Ruhr-Uni.-Bochum, Germany
²Obserwatorium Astronomiczne, Uni. Jagiellońskiego, Kraków, Poland
³CDS, Observatoire de Strasbourg, France
⁴Uni. of Bordeaux, France
⁵MPIfR Bonn, Germany
⁶MPE Garching, Germany

On the menu for today...

XMM-NEWTON

esa

Virgo Cluster: a lab for studying galaxy evolution Interaction diagnostics: tools & methods Our sample of Virgo galaxies: radio & X-rays Summary & Outlook

eesa

The Evolution of Spiral Galaxies in a Cluster Environment

Introduction: The Virgo Cluster

- Distance: ~17 Mpc
- 1' = 5 kpc
- Velocity dispersion: ~700 km/s
- Dynamically young cluster
- Mass: ~10¹⁴ M_{solar} at R=1 Mpc
- $M_{gas}/M_{tot} \sim 14\%$
- $M_{gal}/M_{tot} \sim 4\%$
- $M/L \sim 500$

esa

The Evolution of Spiral Galaxies in a Cluster Environment

 \bullet

Soft X-ray emission traces hot gas \rightarrow extended emission helps to examine past or present perturbations of the hot ICM, via spatial and spectral analysis

esa

The Evolution of Spiral Galaxies in a Cluster Environment

VIVA VLA Imaging of Virgo in Atomic Gas

(A. Chung, J. van Gorkom, J. Kenney, H. Crowl, B. Vollmer)

© V < 500 km/s © 600 km/s< V < 1300 km/s © 1400 km/s < V < 2000 km/s © V > 2000 km/s

4

Interaction of a spiral galaxy with its environment

- Gravitational interaction galaxy cluster
- Gravitational interaction galaxy galaxy
- Ram pressure galaxy ISM – intracluster medium (ICM)

esa

The Evolution of Spiral Galaxies in a Cluster Environment

Interaction diagnostics

- Which interaction is responsible for the observed distortions/perturbations?
- Determination of the interaction parameters
- Determination of evolutionary path of a galaxy in a cluster
- Means: HI maps and velocity fields, dynamical simulations, polarized radio continuum emission, soft diffuse X-ray emission

esa

The Evolution of Spiral Galaxies in a Cluster Environment

Polarized radio continuum emission – a diagnostic tool for interactions

- Polarized radio continuum emission is proportional to the density of relativistic electrons and the strength of the large-scale regular magnetic field: $PI \sim n_e B^{2-4}$
- Polarized radio continuum emission is sensitive to shear and compression motions

XMM-NEWTON

- Radio continuum survey and study of magnetic fields (Ph.D Weżgowiec)
- In different parts of the cluster, see labelled targets
- Good candidates for X-ray studies (XMM-Newton)
- NGC 4254, NGC 4388 and NGC 4438: for details see poster P6.10 by Weżgowiec et al.

Matthias Ehle

esa

The Evolution of Spiral Galaxies in a Cluster Environment

Numerical simulations

- **ISM-ICM interaction** + gravitational interaction
- turbulent/viscous stripping (Nulsen 1982; timescale ~ 1Gyr)
 - ← ram pressure stripping (momentum transfer; timescale ~10Myr)
- constant **+** time dependent ram pressure
- Models: Eulerian hydro (2D, 3D),
 - Smoothed Particle Hydrodynamics (SPH),
 - Sticky particles (Vollmer et al. 2001, Vollmer 2003)
 - with time dependent ram pressure (Vollmer 2009)

galaxy orbits

temporal ram pressure profile (ρv^2)

Soft diffuse X-ray emission – a new diagnostic tool for interactions

- Diffuse X-ray emission traces distribution of very hot gas from the ISM and ICM: flux ~ n_e n_H
- Diffuse X-ray emission is also sensitive to shear and compression motions
- Hot gas might be expelled, stripped or trailing
- In addition, spectral analysis allows us to derive temperatures, i.e. trace outflow, and study the interface and mixing at the ISM/ICM border

esa

The Evolution of Spiral Galaxies in a Cluster Environment

NGC 4254:

- Sc-type, outside Xray cloud, normal star-formation, no signs of gas deficiency
- Perturbed (HI tail to the NW, Phookun et al. 1993)
- Radio data discussed in Soida et al. (1996) and Chyzy (2008)
- What is the origin of the polarized ridge?
- Tidal or ram pressure?

XMM-NEWTON

- Extended X-ray emission
- Spectral analysis (details in P6.10): polarized ridge region has similar temperature!
- → no shock heating, most likely tidal interaction
 Vollmer et al. 2005: close and rapid encounter ~280 Myr ago, followed by
 - (ongoing) week ram pressure stripping

The Evolution of Spiral Galaxies in a Cluster Environment

Cesa

12 37 30

15

00

36 45

RIGHT ASCENSION (J2000)

30

15

00

- NGC 4569 (M90): SABa galaxy, quite close to cluster centre
- giant radio lobes in an otherwise normal spiral (Chyży et al. 2006 & in prep.)
- Extended X-ray emission suggestive for hot gas outflows (Weżgowiec 2009)
- Probably nuclear starburst in the past
- Smoothed version of the X-ray map reveals giant hot gas halo, including IC 3583

NGC 4569: spectral fits EPIC-pn (Weżgowiec, PhD)

XMM-NEWTON

esa

Model fit parameters of selected regions in NGC 4569.

Reg.	kT_1	kT_2	Photon
no.	[keV]	[keV]	Index
1	0.21 ± 0.05	0.64 ± 0.03	$1.71^{+0.07}_{-0.09}$
2	$0.14\substack{+0.10\\-0.04}$	$0.46 {\pm} 0.08$	$1.26^{+0.25}_{-0.24}$
3	0.12 ± 0.01	0.47 ± 0.08	$1.11_{-0.16}^{+0.17}$
4	$0.15\substack{+0.06\\-0.02}$	$0.61^{+0.07}_{-0.15}$	0.77 ± 0.24
5	0.23+0.09	$0.62^{+0.24}_{-0.17}$	$1.33^{+0.20}_{-0.21}$
6	0.12 ± 0.01	$0.48^{+0.07}_{-0.13}$	1.07 ± 0.11
7	0.10 ± 0.01	$0.47\substack{+0.06\\-0.08}$	$1.16\substack{+0.12\\-0.10}$

- two mekals plus powerlaw
- Similar parameters in all outflow/halo/lobe regions
- Temp. of outflowing gas similar to disk
- But: polarized spur is region with hottest X-ray emission
- Ongoing compression or due to infalling gas (that previously was expelled)?

NGC 4569 – a galactic wind in a ram pressure wind?

XMM-NEWTON

esa

esa

The Evolution of Spiral Galaxies in a Cluster Environment

Summary & Outlook

- Examining compression regions visible in radio polarized intensity also in X-rays can help to distinguish between ram pressure and tidal scenarios
- Radio outflows seem to be accompanied (to some extent) by X-ray ones
- X-ray extended emission is extremely useful in determining evolutionary path of a cluster galaxy
- Future Aims:
 - Obtain X-ray observations of as many as possible of our target galaxies; search for spatial & spectral signatures of interactions in the hot gas
 - Compare the results with radio polarimetry data for better understanding of the past and the future of cluster galaxies
 - Investigate if halo structures agree with model predictions (orbit, ram pressure profile, Mach cones)