X-RAY EMISSION FROM STAR FORMING REGIONS

Ettore Flaccomio INAF – Osservatorio Astronomico di Palermo

A quick tour of PMS stars

PROPERTIES	Infalling Protostar	Evolved Protostar	Classical T Tauri Star	Weak-lined T Tauri Star	Main Sequence Star
Sкетсн				$\langle \langle \rangle$	• () •
Age (years)	10 ⁴	10 ⁵	10 ⁶ - 10 ⁷	10 ⁶ - 10 ⁷	> 10 ⁷
mm/INFRARED CLASS	Class 0	Class I	Class II	Class III	(Class III)
Disk	Yes	Thick	Thick	Thin or Non- <mark>e</mark> xistent	Possible Planetary System
X-RAY	?	Yes	Strong	Strong	Weak
THERMAL RADIO	Yes	Yes	Yes	No	No
NON-THERMAL RADIO	No	Yes	No ?	Yes	Yes
Adapted from Feigelson & Montmerle, ARA&A, 1999					

Outline

- 1. Diffuse X-ray emission from star forming clouds
- 2. X-ray emission from low mass PMS stars
 - Coronae (Results from COUP, XEST, DROXO)
 - Accretion
 - Jets
- 3. Effects of X-rays on circumstellar disks

Diffuse X-ray emission

Found in high mass SFR:

Orion (Guedel et al. 2008), *NGC2024* (Ezoe et al. 2006), *M17* (Townsley et al. 2003), *Rosette* (Wang et al. 2009), *Westerlund 1* (Muno et al. 2006), *Carina Nebula* (Ezoe et al. 2009), *RCW38* (Wolk et al. 2002, 2006), *NGC6334* (Ezoe et al. 2006), *30 Dor* (LMC; Townsley et al. 2006)

<u>Townsley et al. (2003)</u> T ~ 1-10 MK L_X = 3.4 10³³ ergs/s

Wind-wind, wind-cloud collision

Orion Nebula Cluster Guedel et al. (2008)

T ~ 2MK L_x = 5.5 10^{31} ergs/s

Outline

- 1. Diffuse X-ray emission from star forming clouds
- 2. X-ray emission from low mass PMS stars
 - Coronae (Results from COUP, XEST, DROXO)
 - Accretion
 - Jets
- 3. Effects of X-rays on circumstellar disks

First Observations with Einstein (~1980)

E.g." Tautus-Aurigae, Ophiucus, Corona Australis, Chamaeleon

• Known T Tauri stars bright X-ray sources $L_X \sim 10^{30} \text{ ergs s}^{-1}$

 A number of other other X-ray sources also detected: Weak line T-Tauri Stars (WTTS)

Gahm (1980); Feigelson and Decampli (1981); Feigelson and Kriss (1981); Walter and Kuhi (1981); Feigelson and Kriss (1983); Montmerle et al. (1983); Mundt et al. (1983); Walter and Kuhi (1984); Herbig, Vrba and Rydgren (1986); Walter (1986); Walter et al. (1987); Feigelson et al. (1987); Walter et al. (1988); Feigelson and Kriss (1989); Damiani et al. (1990); Walter (1992); Walter et al. (1994); Walter et al. (1997).

ρ Ophiuchi: an "X-ray Christmas tree"

Montmerle et al. 1983 (Einstein IPC data)

Chandra Orion Ultradeep Project (COUP)

Chandra Orion Ultradeep Project

850 ks Chandra on Orion Nebula Cluster (~ 1Myr)

PI: E. Feigelson

13 papers in ApJS Special Issue 160 and several others

1616 X-ray sources of which >1300 cloud members

XMM-Newton Extended Survey in Taurus (XEST)

19 x 30 ks XMM-Newton in Taurus Molecular cloud (+9 XMM-Newton fields in Taurus from archive)

PI: M. Guedel

15 papers in A&A Special Issue 468

126 cloud members detected,33 cloud members undetected

Deep Rho Ophiuchi XMM-Newton Observation (DROXO)

500 ks XMM-Newton on ρ Oph core F

PI: S. Sciortino

2 paper published, several others in prep.

111 X-ray sources

~ 0.5 Myr PMS stars

X-ray activity and accretion Preibisch et al. (2005)

Accretion disks affect (depress) activity?

X-ray luminosities of Class I objects (ONC / COUP)

Possible explanation for lower L_x of accretors:
•Higher density → less efficient heating
•X-ray emission obscured by accretion streams

Gregory et al. (2007)

X-ray photoevaporation of accretion disks?

Flare energy distribution Nanoflare heating?

 $\frac{dN}{dE} \sim E^{-\alpha}$

If $\alpha > 2$ the integral diverges for $E_{min} \rightarrow 0$ infinite amount of energy in nano-flares

Aschwanden et al. (2000)

Flare number energy distribution COUP solar-analogs + XEST stars

Stelzer et al. (2007)

Flare energy distribution Various star forming regions

	Log E _{cut}	α	F _{fl} with E> E _{cut}	Exp.T [ks]	N _{stars}
COUP solar analogs	35.3	1.9 +- 0.3	1 / 1150 ks	850	28
COUP very low-mass	-	2.2 +- 0.2	-	850	165
COUP all	35.6	2.05 +- 0.15	1 / 5542 ks	850	
XEST all	34.9	2.4 +- 0.5	1 / 770 ks	30	22
CygOB2 low mass	35.1	2.1 +- 0.1	1 / 1320 ks	100	1003

Wolk et al. (2005), Caramazza et al. (2007), Stelzer et al. (2007), Albacete Colombo et al. (2007)

Flare energy distributions in all Pre-MS samples support nano-flare heating, but completeness limits for energy are high

Physical modelling of 32 bright flares

Favata et al. (2005)

 $\frac{\tau_{\rm lc}\sqrt{T_{\rm pk}}}{3.7\times10^{-4}F(\zeta)}.$

Reale et al. (1997)

A sigificant number of flares (~10) imply loops longer than 5 $\rm R_{\star}$

Rotational modulation of X-ray emission of ONC stars (COUP) Flaccomio et al. (2005)

Rotational modulation is detected in >10% of the sample. Amplitudes: 20-70%
X-ray emitting structures must be compact (< R*)

Outline

- 1. Diffuse X-ray emission from star forming clouds
- 2. X-ray emission from low mass PMS stars
 - Coronae (Results from COUP, XEST, DROXO)
 - Accretion
 - Jets
- 3. Effects of X-rays on circumstellar disks

X-rays from protostellar and pre-MS jets

Smoothed Color-coded DG Tau - Guedel et al. (2008)

X-rays from protostellar and pre-MS jets

Object	L_X	kT	N _H	$v_{\rm sh}$	D	$L_{\rm bol}/L_{\odot}$	$L_{\rm X}/L_{\rm bol}$
	[10 ²⁹ erg s ⁻¹]	[keV]	[10 ²² cm ⁻²]	[km s ⁻¹]	[pc]		
HH 2	5.2	0.23	≤ 0.09	230	480	81 ^a	1.7×10^{-6}
HH 154	3.0	0.34	1.40	500	140	40 ^b	9.7×10^{-7}
HH 80/81	450	0.13	0.44	700	1700	2×10^{4c}	1.5×10^{-4}
HH 168	1.1	0.5	0.40	500	730	2.5×10^{4c}	3.6×10^{-7}
HH 210	10	0.07-0.33	0.80	130	450	-	-

Bonito et al. (2007)

Only a handful of pre-MS jet shocks have been detected in X-rays.

Outline

- 1. Diffuse X-ray emission from star forming clouds
- 2. X-ray emission from low mass PMS stars
 - Coronae (Results from COUP, XEST, DROXO)
 - Accretion
 - Jets
- 3. Effects of X-rays on circumstellar disks

X-rays and circumstellar disk

Stellar X-rays heat and ionize circumstellar disks (e.g. Igea & Glassgold 1999, Glassgold et al. 2004)

Significant effects on disk structure/evolution and planet formation e.g.: viscosity, photoevaporation (>EUV)

Glassgold et al. (2007), Mejierink et al. (2008), Gorti & Hollenback (2008), Ercolano et al. (2009)

Elias 29 (DROXO)

Giardino et al. (2007,2009); see also Favata et al. (2005)

The [Ne II] 12.81µm fine structure line: a tracer of disk gas and of its response to high energy radiation

Ne 1st and 2nd ionization potentials: 21.56 and 41.0 eV

Glassgold et al. (2007), Mejierink et al. (2008), Gorti & Hollenback (2008), Alexander (2008), Ercolano et al. (2009)

DROXO/IRS Sample

(Deep Rho Ophiuchi XMM-Newton Observation – PI: S. Sciortino)

Flaccomio et al., in press astro-ph:arXiv0906.4700

DoAr25/GY17	II
IRS14/GY54	III
WL12/GY111	Ι
WL22/GY174	II
WL16/GY182	II
WL17/GY205	II
WL10/GY211	II
EL29/GY214	Ι
GY224	II
WL19/GY227	III
WL11/GY229	II
WL20/GY240	Ι
IRS37/GY244	Ι
WL5/GY246	III
IRS42/GY252	II
GY253	III
WL6/GY254	II
CRBR85	II
IRS43/GY265	Ι
IRS44/GY269	Ι
IRS45/GY273	II
IRS46/GY274	Ι
IRS47/GY279	II
GY289	II
GY291	II
IRS48/GY304	Ι
IRS51/GY315	II
IRS54/GY378	II

♦ 28 YSOs in the DROXO field with *high resolution* ($R\sim600$) Spitzer IRS spectra

≥ 25 X-ray sources \rightarrow L_X

3 not X-ray detected \rightarrow upper limits to L_X

Final remarks

- X-ray emission from SFRs is a complex multifaceted phenomenon (cloud, coronae, accretion, jets)
- High energy phenomena now important for star formation and early stellar evolution
- In the past 10 years *Chandra & XMM-Newton* have indeed produced new exciting results
- We have now reached the limits of current instrumentation, and progress will be painful (e.g. for flare analysis, Fe6.4 keV line)