X-ray and radio properties of black hole candidates

Elena Gallo MIT

Outline

Something old

X-ray states and radio jets, unified model, radio/X-ray diagram, jet vs accretion power

Something new

Spins and Lorentz factors: observational constraints on spinpowering of jets

Something borrowed

First accurate parallax distance to a black hole candidate Neutron stars vs. black holes: the complete SED

Black hole X-ray binary outbursts

X-ray states: (low/)hard & quiescent

McClintock & Remillard 2006

Meyer, Liu & Meyer-Hofmeister 2006

X-ray states: (high/)soft

McClintock & Remillard 2006

Radiatively efficient inflow (thin disc)

Meyer, Liu & Meyer-Hofmeister 2006

Spectral energy distribution

Flux density (mJy)

Not all jets are created equal

Fender Belloni Gallo 2004; Fender Homan Belloni 2009 (more later: Belloni's talk)

Corbel et al. 2003 Eastern X-ray jet XTE J1550-564 Western X-ray jet 32^s E٠ 36^s 9 June 2000--56^d28^m40^s DEC (J2000) 32^s 365 -56^d28^m40^s 21 Aug. 2000-32^s 36^s 11 Sept. 2000 -56^d28^m40^s 285 - B DEC (J2000) 32^s 36^s 40^s 11 March 2002 -56^d28^m44^s 15h51m3s 2^s 1^s 51m0^s 59s 58^s 57^s 56^s RA (J2000)

4U1755-33 Angelini et al. 2003

Radio nebulae

Cyg X-1, WRST Gallo et al. 2005

SS433 W50, VLA

Russell et al. 2006

Tapping on black hole spin

Extraction of energy from a rotating black hole (Penrose '69), to power relativistic jets (Blandford-Znajek '77, McKinney '05)

Constraints on spin powering of jets I.

Fender Gallo & Russell (submitted)

Constraints on spin powering of jets II.

Gallo Fender Pooley 2003, Gallo et al. (in prep.)

Constraints on spin powering of jets III.

Source	Mass	Spin estimate		Radio	Refs
	$(M_{\odot}$	Disc	Reflection		
M33 X-7	15.6 ± 1.5	0.77 ± 0.05		No radio	1,6,7
LMC X-1		$0.90^{+0.04}_{-0.09}$		No radio	1,7
LMC X-3		< 0.8		No radio	4,7
		-0.03			13
GS 2000+25		0.03			13
GS 1124-68		-0.04			13
4U 1543-47	9.4 ± 1.0	0.7-0.85	0.3 ± 0.1	Radio data	2, 3,7,8
GRO J1655-40	6.30 ± 0.27	0.65-0.8	0.98 ± 0.01	Radio data	2, 3,7,9
		0.93			13
GRS 1915+105	14 ± 4	0.98-1.0		Radio data	2,5,7
		0-0.15			10
		~ 0.7			11
		0.998			13
XTE J1550-564	9.7-11.6	< 0.8	0.76 ± 0.01	Radio data	4,7
XTE J1650-500	5 ± 2		0.79 ± 0.01	Radio data	7
GX 339-4	≥ 6		0.94 ± 0.02	Radio data	7
SAX J1711.6-3808			$0.6^{+0.2}_{-0.4}$		7
XTE J1908+094			0.75 ± 0.09	Radio data	7
Cygnus X-1	10 ± 5		0.05 ± 0.01	Radio data	7
4U 1957+11	3–16	0.8-1.0	No radio	12	

Constraints on spin powering of jets IV. Hard state

Reflection

Disk

Fender Gallo & Russell (submitted)

Constraints on spin powering of jets IV. Ejections

Reflection

Disk

Fender Gallo & Russell (submitted)

Black holes vs neutron stars: SEDs

Jet vs. accretion power: >30%

Jet vs. accretion power: 10%

First accurate parallactic distance to a black hole candidate

V404 Cygni

7 epochs: VLBA, phsed VLA, EVN, GBT

D=2.37±0.14 kpc

Next generation radio telescopes (EVLA, eMERLIN etc.) will get them all!

Miller-Jones et al. (to be submitted)

X-ray and radio properties of black holes: Summary

Something old

X-ray states and radio jets, unified model, radio/X-ray diagram..So far, so good. More in next talk.

Something new

No observational evidence for spin-powering of jets: either -one or more method fopr estimating jet power is wrong -one or more method for estimating spin is wrong -jet power/velocity are NOT related to spin

Something borrowed

- Accurate parallax distance to V404 Cyg, d=2.37± 0.17 kpc

- Neutron stars vs. black holes: 10% vs 30% of accretion power channeled into a jet