Rapid Optical/X-ray timing of black hole binaries: correlated and non-linear variability

Poshak Gandhi
(RIKEN, JSPS Research Fellow)

V. Dhillon, T.R. Marsh, A.C. Fabian (UK)
K. Makishima, A. Kubota (Japan)
M. Durant, T. Shahbaz (Spain)
J.M. Miller (USA)
H.C. Spruit (Germany)
Optical power of X-ray binaries

Some sources show rapid direct optical variability (Suleimanov+ 2003). GX 339-4 ESO PR 2008

Artist: L. Calçada
Optical timing

Early indications: but not followed up, nor fully understood

(GX 339-4: Motch et al. 1982)
Optical timing

V4641 Sgr:

(Uemura et al. 2002)
XTE J1118+480

Average X-ray flares

Average optical around X-ray flares

(Kanbach et al. 2001, Spruit et al. 2002)
XTE J1118+480

(Kanbach et al. 2001)
Our observations

1. GX 339-4
2. Swift J1753.5-0127
ULTRACAM:
ultra-fast, triple-beam CCD camera

- Light-weight camera (visitor instrument on WHT/VLT/NTT)
- Frame-transfer CCDs with negligible dark current, dead-time
- Speeds ~ 500 frames / sec
- 3 simultaneous optical filters
- Absolute timing ~ 1 ms

http://www.shef.ac.uk/physics/people/vdhillon/ultracam/
Observations

50 ms ULTRACAM frame (r' band)

GX 339-4

Comparison

r

Comparison

X-ray

Time (s)
Power Spectra show broad-band noise in Optical and X-ray data. Lorentzian decomposition is used for spectral analysis.
X-O Cross Correlation Function (CCF)

Rapid variability origin?:
Simple reprocessing models

(Gandhi+ 2008)
1. Small time delay

Average Optical Lag (seconds) \((Gandhi+ 2008) \)

\[150 \text{ ms} \]
2. Anti-correlation

![Graph showing cross-correlation over Optical Lag (seconds)]

(Gandhi+ 2008)

Average Optical Lag (seconds): 150 ms
3. Small optical coherence times

Optical ACF narrower than X-ray ACF

Auto Correlation Function (Poisson corrected)

Lag (s)

Optical

X-rays
3. Small optical coherence times

Auto correlation functions

Power spectra

(rms2 normalization: Belloni+90)
GX 339-4: Simultaneous light curves
Swift J1753.5-0127: Simultaneous light curves

Time (s)
Complex optical/X-ray correlations

![Graph showing cross-correlation over time lag for Swift J1753.5-0127.](#)
Non-linear variability:

\[\frac{df}{dt} \propto f \]

Random shot noise predicts constant \(\sigma \)

(Gandhi 2009)
Additive shots ruled out

Superposition of independent shots =>

Ruled out in X-rays (Uttley et al. 2001...2005) and now optical (Gandhi 2009)
Non-linear variability

Perturbations must be \textit{coupled} together, rather than \textit{superposed}

\textbf{Interactions between multiple emission components}

(Lyubarskii 97, Misra 00, King+04, Titarchuk+07, Zhang 07)
X-ray binaries

(J. Orosz)
Simultaneous rapid optical/X-ray timing of X-ray binaries in low/hard state.

- Optical not reprocessed.

- Complex CCF => jet/corona/disk interaction

- X-ray and optical r.m.s. scales with flux => additive shots ruled out

Fast optical timing => interesting constraints on accretion and hot plasmas