Infrared Excess sources: Compton Thick QSOs at z~2?

Antonis Georgakakis National Observatory of Athens

K. Nandra, M. Rowan-Robinson (Imperial College, London),

P. G. Pérez-González (Universidad Complutense de Madrid)

X-ray Background models

Compton Thick AGN (N_H >2×10²⁴cm⁻²) required by models for the XRB

Finding Compton Thick AGN: X-ray vs mid-IR

Hard to detect below ~10keV

mid-infrared (3-20 μ m): alternative wavelength regime for finding obscured AGN

Infra-Red EXcess source selection

- $f_{24\mu m}/f_R > 1000$
- *R*–[3.6]>3.7
- mean redshift, z~2

Daddi et al. 2007, Fiore et al. 2008, 2009 (IRX sources)

Dey et al. 2008 (DOGs)

X-ray stacking: hardness ratio consistent with Compton Thick AGN (N_H >2×10²⁴cm⁻²).

X-ray faint: 2-3dex fainter than typical AGN. Evidence for CT QSOs ($L_X >> 10^{43}$ erg/s).

X-ray stacking: hardness ratio consistent with Compton Thick AGN (N_H >2×10²⁴cm⁻²).

X-ray faint: 2-3dex fainter than typical AGN. Evidence for CT QSOs ($L_X >> 10^{43}$ erg/s).

X-ray stacking: hardness ratio also consistent with moderate obscured AGN ($N_H \sim 10^{23} \text{cm}^{-2}$).

X-ray faint: also consistent with moderate/low luminosity AGN.

X-ray stacking: hardness ratio also consistent with moderate obscured AGN ($N_H \sim 10^{23} \text{cm}^{-2}$).

X-ray faint: also consistent with moderate/low luminosity AGN.

The nature of IRX sources is controversial:

Compton *Thick* QSOs at z~2 (Daddi07, Fiore08, 09)?

OR

Compton <u>Thin</u> moderate- L_X AGN (Georgantopoulos08, Donley08, Pope09)?

Selection of $z\sim1$ sources with IRX SEDs

- AEGIS + CDF-North
- UV to far-IR photometry:
 RAINBOW* Database
- Select z~1 sources with SEDs that satisfy the IRX selection criteria at z=2:
 - $-f_{24\mu m}/f_R > 1000$
 - -R-[3.6]>3.7mag

^{*}http://guaix.fis.ucm.es/rainbow

Selection of $z\sim1$ sources with IRX SEDs

- AEGIS + CDF-North
 - Total of 21 sources
 with far-UV to 70μm
 SEDs
 - 2-10keV counterparts
 for 9/21 sources

X-ray detected IRX sources: X-ray spectral analysis

9 IRX sources have 2-10keV counterparts

$$-N_{H}\sim10^{21}-5\times10^{23}\text{cm}^{-2}$$

 $-L_{X}\sim10^{42}-2\times10^{44}$ erg/s

X-ray detected IRX sources: SED fits

9 IRX sources have2-10keV counterparts

- star-formationcontributes to mid-IR
- AGN torus component
 is required for all X ray detected IRXs
 with L_x>10⁴³erg/s

Fit models to SED: Rowan-Robinson et al. 2005, 2008

X-ray detected IRX sources: SED fits

9 IRX sources have 2-10keV counterparts

- star-formation contributes to mid-IR
- QSO torus component is required for <u>all</u> Xray detected IRXs with L_x>10⁴³erg/s

IRX sources w/o X-ray counterparts

12 IRX sources w/o X-ray detection

- SEDs consistent with starburst activity
- No evidence for AGN component at mid-IR
- AGN intrinsic
 luminosity <10⁴³erg/s

Conclusions

- $z\sim1$ sources with IRX SEDs: no evidence for luminous ($L_X>10^{43}$ erg/s) Compton Thick ($N_H>2\times10^{24}$ cm⁻²) AGN.
 - X-ray spectra consistent with moderate column densities ($N_H \sim 10^{23} \text{cm}^{-2}$)
 - Star-formation contributes/dominates the mid-IR.
- The population of IRX sources at z~2 is likely to be dominated by Compton thin, moderate/low luminosity AGN.