AGN FEEDBACK IN GALAXY GROUPS: THE CASE OF HCG 62

Myriam Gitti

(SAO-CfA, UniBO, OABO)

In collaboration with: *E. O'Sullivan* (SAO-CfA), *S. Giacintucci* (SAO-CfA), *L. David* (SAO-CfA), *J. Vrtilek* (SAO-CfA), *S. Raychaudhury* (Univ. Birmingham), *P. Nulsen* (SAO-CfA)

With thanks to: *C. Jones* (SAO-CfA), *W. Forman* (SAO-CfA), *T. Ponman* (Univ. Birmingham)

A project to combine X-ray and low-frequency radio data

Target selected by presence of X-ray/radio structure indicative of AGN interaction with hot gas

Group	Z	S _{1.4GHz} (mJy)	$\frac{\text{Log } L_X}{(\text{erg } \text{s}^{-1})}$	GMRT 235 MHz	GMRT 327 MHz	GMRT 610 MHz	Chandra	XMM
UGC408	0.0147	1710	41.40	1		✓	✓	
NGC315	0.0165	2010	41.57	✓		✓	✓	✓
NGC383	0.017	4862	42.72	✓		✓	✓	✓
NGC507	0.0165	99	42.95	✓		✓	✓	✓
NGC741	0.0185	1066	42.50	✓	\checkmark	✓	✓	✓
HCG15	0.0208	25	42.25			✓		✓
NGC1407	0.0059	86	41.92	✓		✓	✓	✓
NGC1587	0.0123	132	41.53	✓		✓	✓	
MKW2	0.0368	385	42.32	✓		✓		✓
NGC3411	0.0153	38	42.51	✓			✓	✓
NGC4636	0.0031	78	41.71	\checkmark		✓	✓	\checkmark
<u>HCG62</u>	<u>0.0137</u>	<u>5</u>	<u>43.20</u>	<u> </u>		<u> </u>	<u><</u>	
NGC5044	0.009	36	43.09	✓	√	✓	✓	✓
NGC5813	0.0066	15	42.06	✓		✓	✓	✓
NGC5846	0.0057	21	42.04			✓	✓	✓
AWM4	0.0318	608	43.30	✓	✓	✓	✓	✓
AWM5	0.0348	50	43.20			~	✓	
NGC7626	0.0114	860	42.05	✓	1	~	1	1

HCG 62 (z = 0.014)

- One of the most intrinsically luminous of the 100 Hickson compact groups: $L_X \approx 10^{43} \text{ erg s}^{-1}$
- $M_{\text{gas}} \approx 10^{12} M_{\text{sun}}$ within ~20' (Ponman & Bertram 93)
- VLA 1.4 GHz : S = 6.6 mJy
- Very clear, small X-ray cavities (first detection in a galaxy group)

beam=18"×12" lowest contour at 0.3 mJy/beam

• 63 galaxies within 50' (*Mulchaey et al. 03*)

• central region dominated by 4 early-type galaxies

• NGC 4778 possibly interacting with NGC 4761 (Spavone et al. 06)

X-RAY DATA: CHANDRA 50 ks (2000)

20 kpc

S

raw 0.5-2.0 keV ACIS

<u>20 NPC:</u>

S cavity

eV AC

N cavity

S

S shock front

X-RAY DATA: XMM 90 ks (2007)

mosaic 0.5-2.0 keV MOS+PN

Unsharp masked image

X-RAY / RADIO INTERACTION – Energy budget –

 $E = \frac{\gamma p V}{\gamma - 1}$

GMRT @235 MHz

Chandra 0.5-2.0 keV

→ $P_{cav} = 3.9 \times 10^{42} \text{ erg s}^{-1}$ $L_{ICM} = 1.8 \times 10^{42} \text{ erg s}^{-1}$

(Rafferty et al. 06)

The AGN outburst is currently supplying about twice the power lost by radiation within the cooling region

 $L_{[10MHz-10GHz]} = 4 \times 10^{38} \text{ erg s}^{-1}$

The radio luminosity is much less than the mechanical power

 \Rightarrow radiative efficiency ~ 10⁻⁴

X-RAY / RADIO INTERACTION – Pressure –

With "revised" (γ_{min} =100) equipartition (Brunetti et al. 97) the cavities are closer to pressure balance than are with standard equipartition

$$E_{pr} = k E_{el}$$

k = [6-27] required for
pressure equilibrium
→ "light" hadronic jets

 $(k_{\text{standard}} \sim \text{few hundreds})$

Cavity N: $\begin{cases}
B_{eq,rev} = 4 \ \mu G \\
P_X / P_{radio} \sim 4 \\
[P_X / P_{eq,standard} \sim 13]
\end{cases}$

Cavity S: $B_{eq,rev} = 7 \mu G$ $P_X / P_{radio} \sim 2$ $[P_X / P_{eq,standard} \sim 8]$

SHOCK FRONT – SB profile

SHOCK FRONT – T profile

Summary on HCG 62

- Strong example of the benefits of a combined X-ray/radio approach to the study of AGN feedback
- Low-frequency radio emission detected in the cavities
- Very low radiative efficiency $\sim 10^{-4}$
- "Light" hadronic jets
- Detection of shock front with $M \sim 1.45$, $E_{shock} \sim 3 \times E_{cav}$
- Total energy in shock + cavities ~ 8×10^{57} erg

(Gitti, O'Sullivan, Giacintucci et al., in prep.)