

Cosmological Evolution of Supermassive Black Holes

Alessandro Marconi

Dipartimento di Astronomia e Scienza dello Spazio Università di Firenze

David Axon Andrea Comastri Roberto Gilli Roberto Maiolino

Tohru Nagao Paola Pietrini Guido Risaliti Andrew Robinson Marco Salvati Mauro Sirigu Guidetta Torricelli

BH evolution: what we know ...

 ★ BHMF from AGN + BHMF of local BHs Local BHs (ρ_{BH} ~ 3-6 ×10⁵ M_☉ Mpc⁻³) mostly grown during luminous AGN activity with ε~0.1, L/L_{Edd} ~ 0.2-0.5; anti-hierarchical BH growth.
***** assume BHs in ALL local galaxies + M_{BH}-L_{sph};
***** correction for missing obscured sources;

bolometric corrections;

single L/L_{Edd} for all AGN.

(Yu & Tremaine 02, Marconi+04, Shankar+04, Hopkins+07, Merloni & Heinz 08, Shankar+09)

★ Virial BH masses + host galaxy M and/or L BH growth appears to precede that of host spheroid: at z > 2 M_{BH}/M_{gal}~ 4-8 M_{BH}/M_{gal}(z=0)

c only type 1 AGN;

reliability of virial BH masses.

consistent with models (Lamastra+09, in prep.) (Peng+06, McLure+06, Alexander+08, Walter+09, Merloni+09)

The "differential" Softan argument

Apply continuity equation to BHMF (Cavaliere +71, Small & Bandford 92):

$$\frac{\partial f(M,t)}{\partial t} + \frac{\partial}{\partial M} \left[\langle \dot{M} \rangle f(M,t) \right] = 0$$

Assuming $\begin{cases} \text{no "source" term (no merging of BHs)} \\ L = \varepsilon \dot{M}c^2 \\ L = \lambda L_{Edd} = \lambda \frac{Mc^2}{t_E} \end{cases} \text{ single L/L_{Edd} value} \\ \text{for all AGN} \end{cases}$

BH Mass Function (AGN relics) AGN Luminosity Function

$$\frac{\partial f(M,t)}{\partial t} + \frac{(1-\varepsilon)\lambda^2 c^2}{\varepsilon t_E^2} \left(\frac{\partial \phi(L,t)}{\partial L}\right) = 0$$

L is total (bolometric) accretion luminosity (usually from L_X after applying bolometric correction)
φ(L,t) is the luminosity function of the whole AGN population (usually derived from X-ray LF after correcting for obscured sources)

Allowing for a L/L_{Edd} distribution

Virial BH masses

Direct measurements from spatially resolved kinematics (gas or stars) limited to local universe (D < 250 Mpc).

At larger distances assume BLR clouds gravitationally bound and apply virial theorem:

$$M_{\rm BH} = f \frac{V^2 R_{BLR}}{G}$$

Reverberation Mapping (RM) based virial masses

V from line width (FWHM)

R_{BLR} from reverberation mapping

Extremely time consuming, use R_{BLR}-L relation (Kaspi+00, Bentz+09) $R_{BLR} \propto L^{\alpha}$

$$M_{BH} = \tilde{f} V^2 L^{\alpha}$$

Single Epoch (SE) virial masses $\frac{M_{BH}(SE)}{M_{BH}(RM)} \sim 0.4 \, dex \, \mathrm{rms}$

Vestergaard & Peterson 06

The effect of radiation pressure

BLR clouds are photoionized; radiation pressure on BLR clouds is an unavoidable physical effect.

Corrected mass estimator:

$$M_{BH} = \int \frac{V^2 R}{G} + g \lambda L_{\lambda}$$

Simple model: BLR clouds optically thick to ionizing photons

R

 $g = \frac{(L_{ion}/\lambda L_{\lambda})}{4\pi G \, c \, m_p N_H}$

Empirical calibration for g (H β):

g value corresponds to $N_H \sim 10^{23}$ cm⁻²; consistent with photoionization models, direct measurements from X-ray observations (Risaliti et al. 2007, 2008, 2009)

When radiation pressure is taken into account:

Improved accuracy of SE masses w.r.t RM ones $(M_{BH}(SE)/M_{BH}(RM) \text{ rms } 0.4 \rightarrow 0.2 \text{ dex})$

NLS1 galaxies lie ON the M_{BH} - σ/L relation

(Marconi+08,09)

NΗ

Is it really important?

The correction for radiation pressure on virial MBH is

- a) important if $N_H < 10^{24} \text{ cm}^{-2}$
- b) negligible if $N_H > 10^{24} \text{ cm}^{-2}$

Is there any evidence for a or b?

Consider the database of ~60000 quasars from SDSS (Shen et al. 2008) and select quasars with both H β and MgII in their spectra. Puzzling result: non linearity of FWHM(MgII) vs FWHM(H β): V_{MgII} ~ (V_{H β})^{0.5}

$$M_{BH} = f_1 V_1^2 L_1^a = f_2 V_2^2 L_2^b$$

 $V_2 \propto V_1 L_1^a / L_2^b \propto V_1 L_1^{a-b}$ with $L_2 \propto L_1$

But ... NO dependence of V_2/V_1 with L observed!

Comparing Hß and MgII ...

Instead of considering M_{BH}, L/L_{Edd} (combination of V, L), consider only observed quantities:

L₁, V₁ (Hβ) L₂, V₂ (MgII)

Observed L,V distributions:

Hβ: $P_1(L_1, V_1)$

MgII: $P_2(L_2, V_2)$

 $P_2(L_2, V_2) = \int \int K(L_2, V_2 | L_1, V_1) P_1(L_1, V_1) dL_1 dV_1$

K is found by imposing that $M_{BH}=f_1V_1^2L_1^a+g_1L_1=f_2V_2^2L_2^b+g_2L_2^{-1}$

Convolve P₁ with K and find best f₂, g₂ and b to match P₂

The case without radiation pressure is excluded, expected FWHM distribution for MgII is broader than observed. Much better agreement if we allow for radiation pressure on H β . MgII calibration is

 $M_{BH}(MgII) = 10^{6.5} V_2^2 L_2^{0.7} \quad g_2 < 10^{5.7} \Rightarrow N_H > 10^{23.9} \text{ cm}^{-2}$ no radiation pressure on MgII, steep R_{BLR}-L relation (slope 0.7 instead of 0.5)

Hβ vs MgII

Radiation pressure explains the tilt of the FWHM(MgII)-FWHM (Hβ) relation: the tilt is an indication that radiation pressure

affects Hβ but not MgII

Linear M_{BH}(H β) - M_{BH}(MgII); smaller scatter for M_{BH}(MgII)/M_{BH}(H β)

CIV vs Mgll

Improved agreement M_{BH}(MgII)-M_{BH}(CIV), almost explained the absence of relation FWHM(CIV) - FWHM (MgII); some problems for CIV (outflows?)

Virial BH masses at high z

Virial M_{BH} from $H\beta$ and CIV are affected by radiation pressure:

$$\frac{M_{BH}(H\beta)}{M_{\odot}} = 10^{6.5} \left(\frac{FWHM(H\beta)}{1000 \,\mathrm{km\,s}}\right)^2 \left(\frac{\lambda L_{\lambda}(5100 \,\mathrm{\AA})}{10^{44} \,\mathrm{erg\,s}}\right)^{0.5} + 10^{7.5} \left(\frac{\lambda L_{\lambda}(5100 \,\mathrm{\AA})}{10^{44} \,\mathrm{erg\,s}}\right)^{0.5}$$
$$\frac{M_{BH}(CIV)}{M_{\odot}} = 10^{6.4} \left(\frac{FWHM(CIV)}{1000 \,\mathrm{km\,s}}\right)^2 \left(\frac{\lambda L_{\lambda}(1350 \,\mathrm{\AA})}{10^{44} \,\mathrm{erg\,s}}\right)^{0.5} + 10^{7.0} \left(\frac{\lambda L_{\lambda}(1350 \,\mathrm{\AA})}{10^{44} \,\mathrm{erg\,s}}\right)^{0.5}$$

From the analysis of observed L, FWHM distributions MgII is little affected by radiation pressure ($N_H > 10^{24} \text{ cm}^{-2}$):

$$\frac{M_{BH}(MgII)}{M_{\odot}} = 10^{6.5} \left(\frac{FWHM(MgII)}{1000 \,\mathrm{km\,s}}\right)^2 \left(\frac{\lambda L_{\lambda}(5100 \,\mathrm{\AA})}{10^{44} \,\mathrm{erg\,s}}\right)^{0.7}$$

Evidence for N_H distribution in BLR clouds, where H β and CIV emission is dominated by low N_H (~10²³ cm⁻²) clouds, and MgII by large N_H (~10²³ cm⁻²) clouds.

MgII appears to be the best line for virial M_{BH} estimates (Marconi +09, in prep.)

Conclusions

Cosmological evolution of BH with the Soltan's argument (Sirigu+ in prep.) Taking into account a distributions of L/L_{Edd} values improve matching of the local BH MF only if dependence on L or z is taken into account. To remove degeneracies observational constraints on L/L_{Edd} are needed. Need reliable BH mass estimates at high z (Effect of radiation pressure?).

BH masses at high z (Marconi+08, Marconi+09, Marconi+ in prep.)
Virial BH masses (from single spectra of broad-line AGN) can be used to estimate M_{BH} at all z.
Estimates based on Hβ and CIV are affected by radiation pressure from ionizing photons, estimates based on MgII are not.
This fact naturally explains the non-linear relation between FWHM(Hβ) and FWHM(MgII), and improve the agreement between M_{BH} estimated from different broad emission lines.

To obtain a clear and complete picture of the cosmological evolution of supermassive BH it is necessary to combine AGN Luminosity Functions AND their L/L_{Eddington} distributions (ie needsM_{BH})