Stellar mass black hole accretion disks in the low-hard state

Rubens Reis Institute of Astronomy - Cambridge

In collaboration with Andy Fabian and Jon Miller

Introduction: Geometry and Spectral components

The origin of the hard powerlaw-like component is still not established: Base of a jet Patchy corona/Magnetic flares Advection-dominated region

The innermost extent of the accretion disk in the low-hard state (LHS) is still not established

Introduction: Shakura-Sunyaev accretion disk

Characteristic blackbody temperature can be approximated as $kT\sim (M/10\,{
m M_\odot})^{-1/4}(L/L_{Edd})^{1/4}\,{
m keV}$

Stellar-mass black holes in the low-hard state

 $L \sim (0.1 - 1)\% L_{Edd}$

Need low energy coverage

If the disk is truncated the temperature will be colder

Systematically investigate spectra of various X-ray binaries in the LHS

Low energy coverage (<3 keV)

XMM-Newton, Chandra, Swift and Suzaku.

Physical parameters (mass, distance and inclination) obtained from the literature

Physical parameters + spectral fitting = constraint in the position of the innermost radius of accretion

Source	Inclination	Distance	Mass	
	(degrees)	(kpc)	(M_{\odot})	
GX 339-4	10–30	6–10	10–20	XMM-Newton
J1650-500	47–70	1.9–3.3	5.3-11.3	XMM-Newton
Cygnus X-1	25–50	2.0-2.2	7–25	Suzaku
J1753.5-0127	49–57	7.2–10.0	4–16	XMM-Newton
J1655-40	68.3–87	3.0-3.4	5.8-6.8	Suzaku
J1118+480	60-83	1.2–2.4	7–10	Chandra
J17497-2821	10-80	5–10	5–20	Suzaku
J1817-330	10-80	1–15	4–15	SWIFT

Results: 0.5-10 keV fit with absorbed PL

<u>Results</u>: Masking the presence of a disk...

...with an artificially low column density (N_{μ})

Average hydrogen column density in direction of Cygnus X-1 is $~7.2 \times 10^{21} \text{ cm}^{-2}$ (Kalberla et al. 2005)

Results: PL + Diskbb

Source	$N_{ m H}~(imes 10^{22}{ m cm}^{-2})$	Γ	kT (keV)	$N_{ m Diskbb} imes 10^3$	χ^2/ u
GX 339-4	0.495 ± 0.006	1.67 ± 0.01	0.254 ± 0.006	$5.02\substack{+0.80\\-0.67}$	2874.0/1633
J1650-500	0.556 ± 0.004	2.10 ± 0.01	0.310 ± 0.004	55 ± 4	1507.9/1273
Cygnus X-1 (1)	0.53 ± 0.02	1.71 ± 0.01	$0.194\substack{+0.005\\-0.004}$	236^{+63}_{-54}	783.1/722
Cygnus X-1 (2)	0.50 ± 0.02	1.70 ± 0.01	$0.194\substack{+0.007\\-0.006}$	155_{-49}^{+62}	719.2/683
J1753.5-0127	0.197 ± 0.004	1.61 ± 0.01	$0.274_{-0.014}^{+0.015}$	$0.32\substack{+0.11 \\ -0.08}$	1961.0/1497
J1655-40	0.63 ± 0.02	1.67 ± 0.01	0.21 ± 0.01	$5.4^{+2.7}_{-2.0}$	1618.8/1439
J1118+480	0.022 ± 0.003	1.69 ± 0.01	0.21 ± 0.01	$7.4^{+1.4}_{-1.2}$	3747.3/4246
J17497-2821	4.72 ± 0.08	1.56 ± 0.01	0.20 ± 0.01	$54^{+\bar{4}9}_{-24}$	1102.5/1182
J1817-330(1)	0.12(f)	2.1 ± 0.1	0.20 ± 0.01	$27_{-6}^{+\tilde{9}}$	204.0/207
J1817-330 (2)	0.12(f)	1.5 ± 0.2	0.21	$1.3^{+1.5}_{-0.6}$	69.1/79

$N = (R_{in}/D)^2 \times cos\theta$

Use estimate of mass, distance and inclination to obtain R_{in} in gravitational radii $R_g = GM/c^2$

Diskbb: Mitsuda et al. 1984 Ezdiskbb: Zimmerman et al. 2005

<u>Results</u>: R_{in} always consistent with ISCO!

<u>**Results</u>:** Can the disk be truncated at 100R_g?</u>

Model thermal component with DISKPN (Gierlinski et al. 1999) where R_{in} is a free parameter.

Freeze R_{in} at both 6 and 100Rg

Models with and without truncation gives equally satisfactory fits.

Only the normalisation differs between the interpretations

<u>**Results</u>: Can the disk be truncated at 100R_g?</u>**

Model thermal component with DISKPN (Gierlinski et al. 1999) where R_{in} is a free parameter.

Freeze R_{in} at both 6 and 100Rg

Models with and without truncation gives equally satisfactory fits.

Only the normalisation differs between the interpretations $I = (1/f^4)(M/D)^2cos\theta$ $f = T_{col}/T_{eff} \sim 1.7$ < 3

Look at inclination as a function of f

Results:

<u>Results</u>: Inner radius from reflection

Constraints on the disk geometry can also be found using reflection signatures

Energy

<u>Results</u>: Inner radius from reflection

<u>Results</u>: Inner radius from reflection

An inner radius extending to within 6Rg is found in GX 339-4, J1650-500 and J1655-40

For Cygnus X-1 the radius is constrained to within 12Rg

In J1753.5-0127 an inner radius greater than 20Rg is excluded at the 30 level

- We present a study of 8 black holes in the LHS.
 - A thermal disk continuum is clearly detected in all eight sources, down to $\sim 5 \times 10^{-4} L_{Edd}$.
- \rightarrow In six sources, disk models exclude a truncation radius of $10R_{g}$.
- → Iron-K fluorescence line emission is observed in half of the sample, down to luminosities of ~ $1.5 \times 10^{-3} L_{Edd}$.
- Detailed fits to the line profiles exclude a truncated disk in each case.

If the inner disk evaporates in the LHS, it must happen at or below ~ $1.5 \times 10^{-3} L_{Edd}$.