Bologna, 2009 September 8

The spectacular X-ray echo of a magnetar burst

Andrea Tiengo INAF, IASF-Milano

G. Vianello, P. Esposito, S.Mereghetti, G.L. Israel, L. Stella, R. Turolla, S. Zane, N. Rea, D. Götz, F. Bernardini, A. Moretti, P. Romano, N. Gehrels, N. Schartel

The magnetar 1E 1547.0-5408

 Gelfand & Gaensler (2007, ApJ 667, 1111): proposed 1E1547 to be a magnetar, based on X-ray spectrum, lack of stellar companion and location in SNR

- <u>Camilo et al. (2007, ApJ 666, L93)</u>: discovery of radio pulsations \Rightarrow becomes 2nd magnetar showing radio pulsations and the fastest spinning magnetar (period = 2 s)
- Halpern et al. (2008, ApJ 676, 1178): X-ray flux increase and detection of X-ray pulsations
- 2008 Oct: first SGR-like bursts detected and large flux increase (Israel et al., in prep)
- <u>2009 Jan</u>: many bright bursts, huge flux increase and X-ray rings (Tiengo et al., in prep)

INTEGRAL SPI anti-coincidence (E>80 keV) (Mereghetti et al., ApJ 696, 2009)

X-ray observations

Fixing **t=0** at the time of the burst with pulsating tail:

 <u>t<1 d:</u> 1-2 ks Swift/XRT observations in Windowed Timing (WT) mode
⇒ each column collapsed in one pixel
⇒ <u>no 2D imaging</u>

•<u>t>1d:</u> 2-6 ks Swift/XRT observations in Photon Counting (PC) mode

•<u>t=13 d:</u> 50 ks XMM-Newton/EPIC ToO observation in Full Frame mode

Swift/XRT: t=1.37 d

XMM/EPIC: t=12.3 d

<u>3 rings:</u> 1 burst (which one?) and 3 dust layers? OR 3 bursts (which ones?) and 1 dust layer?

Radial profiles and rings expansion

For ~1 day the flux of the innermost ring was brighter than the persistent X-ray emission of the magnetar ⇒ WT data are dominated by dust-scattered emission

Rings lightcurve = halo profile

Assuming the dust composition and grain size distribution, simultaneous fit of all spectra for each ring provides source distance and burst spectrum (and the burst fluence assuming A_v of dust layer)

Rings lightcurve = halo profile

Assuming the dust composition and grain size distribution, simultaneous fit of all spectra for each ring provides source distance and burst spectrum (and the burst fluence assuming A_v of dust layer)

Rings lightcurve = halo profile

Assuming the dust composition and grain size distribution, simultaneous fit of all spectra for each ring provides source distance and burst spectrum (and the burst fluence assuming A_v of dust layer)

What have we learnt from this spectacular event?

- The distance of the magnetar (and of the dust layers): systematic uncertainties in dust models and non-standard data analysis (work in progress)
- These data are a severe test for dust models: although the burst X-ray spectrum was not measured (but a future bright burst might be directly observed), we have 3 independent measures of distance and burst spectrum

 <u>The dust echo of a bright magnetar burst can</u> <u>dominate over its persistent X-ray emission</u>: X-ray afterglows of other magnetar bursts might also be contaminated by dust scattering