A search for relativistic outflows signatures in the X-ray spectra of Radio-Quiet AGNs

Francesco Tombesi

Dept. of Astronomy, University of Bologna, Italy INAF-IASF Bologna, Italy

Main collaborators: M. Cappi, G.G.C. Palumbo, J. Reeves, T. Yaqoob, V. Braito, M. Dadina, ...

X-ray Astronomy 2009, Bologna, 7-11 September 2009

X-ray evidence

Narrow absorption lines at E>6keV detected in the X-ray spectra of several Radio-Quiet AGNS (e.g. Pounds et al. 2003; Reeves et al. 2004; Dadina et al. 2005; Markowitz et al. 2006; Braito et al. 2007; Turner et al. 2008; Cappi et al. 2009; ...)

PG1211+143 (Pounds et al. 2003; Pounds & Page 2006)

General characteristics

Presence of previously unknown ultra-fast outflow:

- Blue-shifted FeXXV/XXVI K resonant absorption
- Highly ionized (logξ≈2-5 erg s⁻¹ cm)
- Large column densities ($N_{H} \approx 10^{22-24} \text{ cm}^{-2}$)
- Large outflow velocities (up to 0.2-0.4c)
- Variability on short time-scales (down to ${\approx}100 \text{ks})$
- Location close to SMBH (r<0.01pc, <10³ r_g)

Different from classical X-ray Warm Absorbers?

- ~50% Seyfert galaxies in soft X-rays
- Lower ionization (logξ=0-3 erg s⁻¹ cm)
- Lower column densities (N_H=10²⁰⁻²³ cm⁻²)
- Slow outflow velocities (≈1000 km/s)
- More distant (r≈1-100pc)
- Connection with optical-UV BLR or torus winds

(e.g. Blustin et al. 2004; McKernan et al. 2007)

Publication bias? (Vaughan & Uttley 2008)

- Significance of individual blue-shifted line can be weak
- Only positive detections are reported in literature
- Doubts on lines global significance

Fast outflows in AGNs

• Fast outflows are well known to be present in some AGN classes (e.g. relativistic jets in radio-loud AGNs; BAL-QSOs)

• Fast and massive outflows are naturally generated by black hole accretion systems. Accretion disk winds/ ejecta? (e.g. Proga et al. 2000; King & Pounds 2003; Schurch et al. 2009; Ohsuga et al. 2009)

• Need to establish global frequency and characteristics of fast outflows in radio-quiet AGNs

Physical implications: (e.g Cappi 2006)

- insights into black hole accretion physics
- growth of SMBHs
- AGN feedback and evolution of the host galaxy

Aim of our work:

Statistically quantify the incidence and parameters of blue-shifted Fe K absorption lines in a complete sample of radio-quiet AGNs

Sample of radio-quiet AGNs

• Selection of all NLSy1, Sy1 and Sy2 in RXTE All-Sky Slew Survey Catalog (complete at 90% at 4σ limiting flux 10⁻¹¹ erg s⁻¹ cm⁻² in 4-10keV; Revnivtsev et al. 2004)

- Cross-correlation with XMM-Newton Accepted Targets Catalog
- 44 objects for 104 pointed XMM-Newton observations
- Local (z≤0.1)
- X-ray bright (F_{4-10keV}=10⁻¹²-10⁻¹⁰ erg s⁻¹ cm⁻²)

Absorption lines search

Uniform spectral analysis:

- Reduction and analysis of all EPIC pn spectra in the 4-10keV
- Baseline model: absorbed power-law + Gaussian Fe K emission lines

Absorption lines search:

- Addition of narrow line to baseline model stepping energy in 4-10keV and recording $\Delta\chi^2$ deviations
- Visualization on energy-intensity contour plot (significance 68% red, 90% green, 99% blue) (e.g. Cappi et al. 2009)
- Selection of narrow lines with F-test confidence levels \ge 99%
- Line parameters determined by direct fitting to the data

Example of PG1211+143 (Tombesi et al. in prep I)

Absorption lines significance

F-test can overestimate the detection significance for a blind search of emission/absorption lines over a range of energies (e.g. Protassov et al. 2002).

Extensive Monte Carlo simulations (e.g. Cappi et al. 2009)

- Additional significance test for lines at energies \geq 7.1keV
- Null hypothesis that spectra are fitted by model without absorption lines
- 10³ simulated spectra for each case
- Simulated $\Delta\chi^2$ distribution for random generated lines
- Selection of lines with MC confidence levels ${\geq}95\%$
- 36 absorption lines detected (22 at E≥7.1keV)

Global probability to be generated by random fluctuations is very low ($\leq 10^{-8}$ from Binomial distribution).

Simulated Cumulative Probability

Checked no contamination from pn background and calibration

• Independent confirmation of blue-shifted lines detection from MOS data (without relying on any statistical method)

Results

- Identified with FeXXV and FeXXVI K-shell resonant absorption
- 19/44 objects with absorption lines (≈43%)
- 17/44 objects with blue-shifted absorption lines (lower limit ${\approx}39\%,$ can reach a maximum of ${\approx}60\%)$
- 11/44 objects with outflow velocity \geq 0.1c (\approx 25%)
- Blue-shift velocity distribution ~0-0.3c, peak ~0.1c
- Average outflow velocity <v>=0.110±0.004c

(Tombesi et al. in prep I)

Results

Line	Num (A)	EW (A)	Num (B)	EW (B)
		(eV)		(eV)
Fe XXV K α	4	32 ± 7	1	130 ± 35
Fe XXV Kβ	2	29 ± 9	0	
Fe XXVI Ly α	8	43 ± 8	8	45 ± 11
Fe XXVI Ly β	1	34 ± 9	0	

Average line EWs. (A) v<0.1c (B) v≥0.1c (Tombesi et al. in prep I)

- Most frequent detected line is FeXXVI Ly $\!\alpha$
- EW is in the range \approx 10-100eV, with mean \approx 40-50eV
- Estimeted global covering factor from fraction of sources with lines (C= $\Omega/4\Pi$) \approx 0.4-0.6
- Geometry not very collimated, large opening angles favored

(Tombesi et al. in prep I)

Discussion

Blue-shifted line EWs vs. 90% error (Tombesi et al. in prep I)

Blue-shift vs. cosmological red-shift (Tombesi et al. in prep I)

Publication bias solved:

- Uniform analysis on complete sample of sources
- Lines detection assessed by MC simulations
- Global random probability very low (<10⁻⁸)
- Detection independently confirmed by MOS data (Tombesi et al. in prep I)

No correlation between cosmological red-shift and lines blue-shift, no systematic local ($z \approx 0$) absorption.

(Tombesi et al. in prep I)

Physical modelling

Line			<e></e>	<f></f>
Fe XXV K α	1s ² -1s2p	i+r	6697 eV	7.7×10^{-1}
Fe XXV K β	$1s^2 - 1s^3p$	i+r	7880 eV	1.55×10^{-1}
Fe XXVI Ly α	1s-2p	1 + 2	6966 eV	4.2×10^{-1}
Fe XXVI Lyβ	1s-3p	1 + 2	8250 eV	8.0×10^{-2}

Data modelling

- Photoionized absorbers modeled with XSTAR
- Direct pn spectral data fitting (in the 4-10keV band)

Curve of Growth analysis

- XSTAR simulations to derive Fe ions populations
- Tested different input SED shapes
- Direct line Voigt profile integration
- Line EW as a function of:
 - Total column density $N_{\rm H}$
 - Ionization parameter ξ
 - Gas turbulent velocity v_{turb}

This will allow to estimate physical parameters, such as: r, $\rm M_{out}, \, M_{acc}, ...$

(results will be published in Tombesi et al. in prep II)

FeXXV K α /FeXXVI Ly α ratio (Tombesi et al. in prep II)

Curve of Growth FeXXVI Ly $\!\alpha$ (Tombesi et al. in prep II)

IXO calorimeter simulations

X-ray Microcalorimeter Spectrometer (XMS): high effective area ($\approx 0.65m^2$ @ 6keV) and high energy resolution (FWHM $\approx 2.5eV$) from 0.1keV up to 12-13keV.

Flux limits (EW=10eV) (Tombesi et al. in prep III)

Flux limits

- 2-10keV flux limits for 5σ detection of narrow absorption lines in the 3-11keV
- Different EWs, exposure times and responses
- Lines of EW=10eV (50eV) in ${\approx}6\text{-}9keV$ for ${\approx}10^{\text{-}12}\,(10^{\text{-}13})$ erg s $^{\text{-}1}$ cm $^{\text{-}2}$ (expo 100ks)
- Spectral variability on time-scales of 5 (10) ks for ${\approx}10^{\text{-}11}$ (10^{\text{-}12}) erg s^{\text{-}1} cm^{\text{-}2}

 $log\xi$ =3 erg s^1 cm, N_H=10^{23}cm^2, b=1000km/s ~(Tombesi et al. in prep III)

Spectra simulations

- Simulations of highly ionized and massive absorbers
- FeXXV/XXVI K lines detectable with high significance
- Line details (profile, energy, broadening) measured with high accuracy
- Extend study to less bright sources
- Possible detection of lines with higher blue-shifts

Conclusions

- Search for narrow blue-shifted Fe K absorption lines in a complete sample of 44 radio-quiet AGNs observed with XMM-Newton
- 36 detected absorption lines (22 at E≥7.1keV)
- Global veracity is strong and publication bias solved

Existence of highly ionized, massive and ultra-fast outflows in radio-quiet AGNs:

- ~40% of sources have blue-shifted absorption lines (~25% with v \geq 0.1c)
- Outflow velocities up to relativistic values (\approx 0.2-0.3c)
- Global covering factor \approx 0.4-0.6, large opening angles favored
- Important for: BH accretion physics, AGN feedback with host galaxy, SMBH growth, ...
- Improvement expected from future X-ray missions, such as Astro-H and IXO

Thank you