

X-ray properties of normal galaxies in the local universe

Ginevra Trinchieri INAF-OABrera

Thanks to: M. Bauer, N. Brassington, D. Breitschwerdt, G. Fabbiano, D.-W. Kim, E. Memola, S. Pellegrini, F. Pizzolato, W. Pietsch, A. Wolter..... and many others

- Faint X-ray sources : L_x ~10³⁹ 10⁴¹ erg/s
 → low flux sources!
- <u>Complex</u> systems: at least 3 main components, with different relative importance
 - ✓ Individual sources
 - Binaries : LMXB HMXB ULX in BH/NS/WD
 - 🗸 SN SNR
 - 🗸 Stars

✓ Gas from normal stellar evolution/starformation activity✓ Low luminosity AGN

<u>In different</u> environments : isolated - interacting
 - in groups - in clusters

Normal late-type Galaxies in the local universe

A

Osservatorio Astronomico di Brera

Normal late-type Galaxies in the local universe →Hot ISM a minor component : compact sources dominate (but energy dependent) →Gas - contributes at <1.5 keV

• IN disks e.g. Ehle et al 1998, Read & Pietsch 2001; Kuntz et al. 2003; Tyler et al. 2004, Warwick et al 2007; Bauer et al 2007; Owen & Warwick 2009

2T (0.2;0.7 keV); $L_X \approx 0.1-6 \ 10^{39} \text{ erg/s};$ $M_{gas} \approx \ 10^8 M_{\odot}$ Relation with local SFR

 in bulges e.g. M31 (Bogdan & Gilfanov 2008): kT ≈ 0.3 keV; M_{gas}≈ 2 10⁶ M_☉
 Gas distribution in the center of M31 Fig. 8 in Bogdan & Gilfanov 2008

• in halo : so far associated with H α /SF activity

<u>Normal</u> late-type Galaxies in the local universe
 Individual sources concentrated towards the bulge/center/plane/arms as in MW

on SMC

Studies of populations of X-ray sources:

→ Variability

→ Spectral properties and HR diagrams

→ Source classification

XLF: "universal" shape. Normalization: LMXB as stellar mass indicator HMXB as SF activity indicator

Too many refs: latest Prestwich et al. 2009 Friday astro-ph!

"Universal" luminosity functions

* HMXB: Single power law.
Normalization is SFR
S arms/disks and starbursts

* LMXB: Broken power law. Normalization is Stellar Mass. Spirals + Ellipticals

see Grimm et al 2003, Ranalli et al 2003, Gilfanov et al 2004, Mineo this conf.

Starburst Galaxies in the local universe

Osservatorio Astronomico di Brera

Credit: X-ray: NASA/CXC/JHU/D.Strickland; Optical: NASA/ ESA/STScI/AURA/The Hubble Heritage Team; IR: NASA/JPL-Caltech/Univ. of AZ/C. Engelbracht

Credit: X-ray: NASA/CXC/UMass/D.Wang et al., Optical: NASA/HST/D.Wang et al.

R band (red), Hα (green) and 0.3–1.5 keV (blue)

(Credit: NASA/CXC/SAO/G.Fabbiano et al.)

Large fraction of soft emission is from <u>hot gas</u>: >20% NGC3256 Moran et al. 1999, Lira et al 2002, ~<u>50%</u> Antennae Fabbiano et al. 2001 ~<u>80%</u> M82 Zezas et al 2001

Gas is

- multi-T: kT 0.2-1 keV
- different metal abundance in different regions (Antennae, Ngc253)
- associated with Ha emission/SF activity indicators (Antennae, N253, N3079, Arp220, Cartwheel), both in the plane and in the halo.
- Halos are softer than disks, possible multi-T (N253, Bauer et al 2008)

Gas extent correlates with SF activity and disk size

Compact source population correlates with SF activity

from Cecil et al. 03, Strickland et al. 02-04, Baldi et al. 06 Tüllmann et al. 2006, Bauer et al 2007-2008,

The Antennae Baldi et al. 2006. Eabbiano et al 2002.

Baldi et al. 2006, Fabbiano et al 2002-3-4

RA (J2000)

NeX

- Emission in many different lines
- Different spatial distribution / temperature for different elements

Nuclear outflow in NGC253

Bauer et al, 2007

The Cartwheel galaxy

(Wolter et al 1999, 2004, 2006, Crivellari et al 2009, Pizzolato et al in prep)

Istituto Nazionale di Astrofisica Osservatorio Astronomico di Brera

The Cartwheel galaxy (Wolter et al 1999, 2004, 2006, Crivellari et al 2009, Pizzolato et al in prep)

variability

Chandra – XMM XMM – XMM

Ch-Ch-Ch

3 epoch Chandra 2001: red 2008-1 : green 2008-2 : blue

Oservatorio Astronomico di Brea Che Cartwheel galaxy (Wolter et al 1999, 2004, 2006, Crivellari et al 2009, Pizzolato et al in prep)

Which are "normal"?
Best studied/brightest are central group objects!
Are they special cases?
Relatively little info on "normal" systems → fainter

What I will not cover [among others]

- Metallicity: better agreement with stellar metallicities, around solar. Possibly non-solar ratios. Where do "low-luminosity" objects fit?
- AGN feedback: spectacular images of cavities / rims and [anti]correlation with radio lobes Talk on ISM/IGM
- XLF of LMXB: similar in different objects, normalization linked to stellar mass AND GC relative freq. Extended down to ~10³⁶⁻³⁷ erg/s. "Universal" break?
- Field vs GC XLF: clear deficit of low luminosity sources in GC - implication for LMXB formation for Posters on

GC-LMXB

How much gas is in "normal" galaxies

Discrete sources
 @ low Lx --- Now clearly observed in images
 ~ proportional to mass/GCs -> Predictable when not measured!

Hot gas @ high Lx large scatter
 (>100x @ L_B~10¹¹) → correlation with galactic properties?

How do we interpret the scatter?

Modeling for gas component. For ex:

Osservatorio Astronomico di Brera

Inflow/outflow (winds) (Ciotti et al '91)

Inflow→ keep gas in system → high Lx

Outflow→ clean out the gas → low Lx

Note : Assumed to work in low luminosity systems (e.g. David et al. 2006), winds are hard/impossible to detect!

1 case so far: NGC3379

Trinchieri with Pellegrini Brassington Fabbiano Fu Kim Zezas Gallagher DavisKalogera Angiolini Davies King Zepf 2008

NGC 3379 (Trinchieri et al 2008)

- "Prototypical" E at D=10.8 Well studied at many vAge = 9.0 ± 2.3 Gyr; Little/no DM
- Deep Chandra obs: 98 sources in D_{25} down to $L_{x} \sim 10^{36} \text{ erg s}^{-1}$ Brassington et al 2008
- residual unresolved emission @ L_x~ 10³⁸ erg s⁻¹ → gas or stellar sources? Min. $L_x \sim 3-5 \ 10^{39} \ \text{M}/10^{12} \ \text{M}_{\odot} \ \text{erg s}^{-1}$ expected from stellar-type XS - coronae, RS CVn, SSS

ACIS-S merge of 5 observations raw data & detected sources within D_{25}

(see M 32, NGC 891, MW ridge Revnivtsev et al. 2007, Pellegrini et al. 2007)

NGC 3379 (Trinchieri et al 2008)

- "Prototypical" E at D=10.8 Well studied at many v
 Age = 9.0±2.3 Gyr;
 Little/no DM
- Deep Chandra obs: 98 sources in D_{25} down to $L_x \sim 10^{36}$ erg s⁻¹ Brassington et al 2008
- residual unresolved emission @ L_x~ 10³⁸ erg s⁻¹
 → gas or stellar sources? Min. L_x ~3-5 10³⁹ M/10¹² M_☉ erg s⁻¹ expected from stellar-type XS - coronae, RS CVn, SSS (see M 32, NGC 891, MW ridge Revni

(see M 32, NGC 891, MW ridge Revnivtsev et al. 2007, Pellegrini et al. 2007)

Radial Distribution

- Radial profile in "suitable" bands dictated by spectrum
 - Very soft 0.3-0.7 keV
 - Soft 0.7-1.5 keV
 - Hard 1.5-5.0 keV
- Compare one another and with optical/IR
 - Very soft ~ hard ~ opt/IR
 - Soft STEEPER than Very soft hard opt/IR
 → but comparable outside 15"
- Soft emission has clear excess at r<15^{''}
 → L_v~4x10³⁷ erg s⁻¹ (0.5-2.0 keV)

Gas in an outflow phase?

- Hydrodynamical simulations tailored to NGC 3379
- Assume passive evolution and age=9 Gyr
- Use: observed L_B, velocity dispersion, total stellar mass
- Time evolving inputs:
 stellar mass loss
 - SNIa heating
- Predicted profiles for 2 SNIa decay rates
- Gas in Outflow phase:
 L_x~4×10³⁷ erg s⁻¹ (0.5-2.0 keV) (vs 2)

 $M_{gas} \sim 3 \times 10^5 M_{\odot}$ (vs 5)

Select sample "appropriately"

→ Morphology [E/SO] eg. Eskridge et al. '95

→Shape [Bender et al '89, Pellegrini '94, Ellis & O'Sullivan '06 Kormendy et al '09]

* Boxy-core : X-ray gas and powerful AGNs

* Disky-coreless : no X-ray gas no strong RS

→ Total / luminous Mass Central velocity dispersion

→ Evolutionary history (Fabbiano & Schweitzer 1995, Samson et al 2000, Nolan et al. 2004, Brassington et al 2007):

* young galaxies are fainter

Osservatorio Astronomico di Brera

How many are central group galaxies?

NGC 821: Proctor et al. 2005 [Adapted from talk by D. Forbes, Granada 2009]

luminosity-weighted age vs radius

burst of star formation fuelled by in situ gas from the galaxy itself

nale di Astrofisica 🔵

"Less extreme" yet "poor" environments

Excluding central bright galaxies is not the answer

Mass/Lum issue? Galaxies "can" loose the hot gas produced only for "low" L/M?

The future Since galaxies are

- <u>Faint</u>
- <u>Complex</u>
- <u>In complex</u> environments

high spatial (spectral) resolution large FoV

→ large throughput

Thank you