X-ray emission from neutron stars in low-mass X-ray binaries

Cooling of accretion-heated neutron stars

Rudy Wijnands Astronomical Institute "Anton Pannekoek" University of Amsterdam

September 7, 2009

X-ray Astronomy 2009

Bologna, Italy

Persistent and transient LMXBs

Outburst

Quiescence

NS heating

Transient LMXBs

Study neutron stars in LMXBs

- Actively accreting
 - Difficult to observe the neutron star
 - Accretion luminosity usually outshines neutron star
 - Thermonuclear flashes
 - Quasi-stable burning
 - X-ray pulsars
 - Indirect studies
 - Spectral and variability studies (e.g., quasi-periodic oscillations, iron line studies)
- Transiently accreting neutron stars in LMXBs
 - Heating in outburst, cooling in quiescence
 - Study them in quiescence

Heating of accreting neutron stars

Do we detect cooling neutron star?

Asai et al. 1998

Several ways to constrain properties of ultra dense matter in neutron stars

- Measure mass/radius from the thermal spectrum
 - Need distance \Rightarrow globular clusters
 - NSA model dependent + nasty power-law component
- Gravitational red-shifted lines
 - Only if residual accretion on NS surfaces occurs
- Inferred core temperature versus predicted one
- Crust cooling after prolonged (>years) outburst

Several ways to constrain properties of ultra dense matter in neutron stars

- Measure mass/radius from the thermal spectrum
 - Need distance \Rightarrow globular clusters
 - NSA model dependent + nasty power-law component
- Gravitational red-shifted lines
 - Only if residual accretion on NS surfaces occurs
- Inferred core temperature versus predicted one
- Crust cooling after prolonged (>years) outburst

Need better data

Several ways to constrain properties of ultra dense matter in neutron stars

- Measure mass/radius from the thermal spectrum
 - Need distance \Rightarrow globular clusters
 - NSA model dependent + nasty power-law component
- Gravitational red-shifted lines
 - Only if residual accretion on NS surfaces occurs
- Inferred core temperature versus predicted one
- Crust cooling after prolonged (>years) outburst

Brown et al. 1998 Heinke et al. 2008 Yakovlev et al. 2004

Several ways to constrain properties of ultra dense matter in neutron stars

- Measure mass/radius from the thermal spectrum
 - Need distance \Rightarrow globular clusters
 - NSA model depend
- Gravitational red-shifted lines
 - Only if residual accretion on NS surfaces occurs
- Inferred core temperature versus predicted one
- Crust cooling after prolonged (>years) outburst

Time in days since January 1, 1996

Wijnands et al. 2001, 2002, 2003, 2004; Cackett et al. 2006, 2008

Calculations of cooling curves

- High heat conductivity in the crust
 - Rutledge et al. 2001; Shternin et al. 2008; Brown & Cumming 2009

New results

- EXO 0748-676 and XTE J1701-462
- First EXO 0748-676
 - In outburst since approximately July 1984
 - Outburst stopped in August/September 2008
 - Many Swift, one XMM-Newton and 3 Chandra observations
 - Degenaar et al. 2009

Comparison with other two sources

XTE J1701-462

Most recent result

- More complicated than hoped
 - Likely some residual accretion during some observations
 - But still very promising
 - Cooling significantly faster than for the other sources
 - Fridriksson et al. 2009

Final remarks

- Potential to probe ultra-dense matter with the cooling of accretion heated neutron stars
- Crust cooling seems particular interesting
 - High crustal heat conductivity
 - Need more sources
- Uncertainties in models
 - Cooling + heating
- Variability and non-thermal component complications

Complication: variability

Rutledge et al. 2002

Thermal or non-thermal?Accretion on surface?

Campana et al. 2004

Complication: non-thermal component

Jonker et al. 2007

Wijnands et al. 2005

Nasty non-thermal influences

- Seriously complicates our ability to measure the luminosity and temperature of the thermal component
 - And thus constrain M and/or R

Yakovlev 2004

Reheating of neutron star in binaries

Isolated neutron stars: cooling after formation - E.g., talk by Dany Page

Colpi et al. 2001

XTE J1701-462

- Very bright transient
 - Near Eddington luminosity
- In outburst in 2006-2007
 - Outburst lasted approximately 1.5 years
 - Was the crust temperature profile that of a steady state?
- Excellent coverage when source decayed to quiescence again
 - $RXTE \Rightarrow Swift \Rightarrow Chandra + XMM-Newton$

Uncertainties

- Again the distance
 - Affects luminosity and inferred temperature
- Time averaged mass accretion rate
 - Core temperature determined over $> 10^{3-4}$ years
 - But only observe these systems for < 40 years
 - Significant errors in <Mdot> exist in the literature
 - Everybody uses his/her own estimates but unclear which are the best
- Uncertainties in heating and cooling models

Curve	$T_{ m s0}^{\infty}$	Crust	Conduction	Superfluid
	MK	model	in crust	in crust
1a 2a 3a 4a 5a 6a	0.8 0.8 0.8 0.8 0.8 0.8 0.8	A GS GS A A A	normal normal normal normal low normal	moderate none moderate strong moderate moderate
1b	$0.8 \\ 0.8 \\ 0.8$	A	normal	moderate
2b		GS	normal	none
3b		GS	normal	moderate

Cooling curves for KS 1731-260

- Rutledge et al. 2001
- Shternin et al. 2008
- Brown & Cumming 2009
- Need high heat conductivity in crust

Calculating cooling curves

- The modeled curves depend on many parameters
 - Crust properties
 - Heat conductivity
 - Likely fully replaced crust
 - Crustal heating properties
 - Deep crustal heating and maybe also outer crust heating
 - Assume steady state temperature profile
 - Neutron star equation of state
 - Core cooling processes
- Observational uncertainties
 - Distance
 - Heat deposited in the crust during outburst
 - Time averaged accretion rate
 - When did accretion stop?
 - Residual accretion in quiescence