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Transient LM XBs
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Study neutron stars in LM XBs

« Actively accreting

— Difficult to observe the neutron star
« Accretion luminosity usually outshines neutron star
* Thermonuclear flashes
* Quasi-stable burning
« X-ray pulsars

— Indirect studies

» Spectral and variability studies (e.g., quasi-periodic oscillations,
iron line studies)

* Transiently accreting neutron stars in LM XBs
— Heating 1n outburst, cooling in quiescence
— Study them 1n quiescence




Heating of accreting neutron stars

Envelope: accreted H, He

!

W
] A~
=
-
S
O
W

Outer crust:nuclei, e

pycnonuclear

Inner crust: nuclei, n, e Provided by Ed Brown




Do we detect cooling neutron star?
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Lets assume: we detect cooling
from reheated neutron star

Several ways to constrain properties of ultra dense
matter in neutron stars

— Measure mass/radius from the thermal spectrum
* Need distance = globular clusters
* NSA model dependent + nasty power-law component
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Lets assume: we detect cooling
from reheated neutron star

Several ways to constrain properties of ultra dense
matter 1n neutron stars
— Measure mass/radius from the thermal spectrum )

* Need distance = globular clusters Need
 NSA model dependent + nasty power-law component - better

— QGravitational red-shifted lines data

* Only if residual accretion on NS surfaces occurs




Lets assume: we detect cooling
from reheated neutron star

Several ways to constrain properties of ultra dense
matter 1n neutron stars
— Measure mass/radius from the thermal spectrum

* Need distance = globular clusters
* NSA model dependent + nasty power-law component

— QGravitational red-shifted lines

* Only if residual accretion on NS surfaces occurs

— Inferred core temperature versus predicted one
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Lets assume: we detect cooling
from reheated neutron star

Several ways to constrain properties of ultra dense
matter in neutron stars

— Measure mass/radius from the thermal spectrum

* Need distance = globular clusters
e NSA model depend

— QGravitational red-shifted lines

* Only if residual accretion on NS surfaces occurs
— Inferred core temperature versus predicted one

— Crust cooling after prolonged (>years) outburst




RXTE ASM count rate (counts s_l)
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Calculations of cooling curves

e High heat conductivity in the crust
— Rutledge et al. 2001; Shternin et al. 2008; Brown & Cumming 2009
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New results

e EXO 0748-676 and XTE J1701-462
e First EXO 0748-676

— In outburst since approximately July 1984
— Outburst stopped in August/September 2008

— Many Swift, one XMM-Newton and 3 Chandra
observations

— Degenaar et al. 2009




Degenaar et al. 2009, in prep
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Comparison with other two sources
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XTE J1701-462
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Most recent
result

e More complicated
than hoped

— Likely some residual
accretion during some
observations
But still very promising

Cooling significantly
faster than for the other
sources

Fridriksson et al. 2009
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Final remarks

Potential to probe ultra-dense matter with the
cooling of accretion heated neutron stars

Crust cooling seems particular interesting
— High crustal heat conductivity

— Need more sources
Uncertainties in models

— Cooling + heating

Variability and non-thermal component
complications







Comphcatlon variability
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Complication: non-thermal component
Wijnands et al. 2005
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Nasty non-thermal influences

* Seriously complicates our ability to measure
the luminosity and temperature of the
thermal component

— And thus constrain M and/or R
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Isolated neutron stars: cooling
after formation
- E.g., talk by Dany Page

RX J0822-43 .

“/1E 1207-52

|

-
i PSR 1055-52

RX J0720.4-3125

Do PSRY06 44

R 3185687 - &L

Yakovlev 2004

T T ] T T T T [ T T T T | T T T T | T

Reheating of neutron star
in binaries
Colp1 et al. 2001




XTE J1701-462

* Very bright transient

— Near Eddington luminosity

e In outburst in 2006-2007

— Outburst lasted approximately 1.5 years

— Was the crust temperature profile that of a steady state?
« Excellent coverage when source decayed to

quiescence again

— RXTE = Swift = Chandra + XMM-Newton




Uncertainties

* Again the distance
— Affects luminosity and inferred temperature

* Time averaged mass accretion rate
— Core temperature determined over > 103-4 years

— But only observe these systems for < 40 years
 Significant errors in <Mdot> exist 1n the literature

» Everybody uses his/her own estimates but unclear
which are the best

» Uncertainties in heating and cooling models




Curve T3y Crust  Conduction  Superfluid

MK  model in crust in crust Cooling Curves for KS 1 73 1 _2 60

0.8 normal moderate

0.8 7:0‘ normal none - Rutledge et al_ 2001

0.8 ¢ normal moderate

8: normal strong _ Shtemil’l et al. 2008

low moderate

0.8 normal moderate - Brown & Cumming 2009

0.8 normal moderate

08 GS  normal  none - Need high heat conductivity in crust

0.8 ¢ normal moderate




Calculating cooling curves

e The modeled curves depend on many parameters

— Crust properties
e Heat conductivity
 Likely fully replaced crust

— Crustal heating properties
* Deep crustal heating and maybe also outer crust heating
« Assume steady state temperature profile

— Neutron star equation of state
— Core cooling processes

* Observational uncertainties
— Distance
— Heat deposited 1n the crust during outburst

« Time averaged accretion rate
— When did accretion stop?
— Residual accretion in quiescence




